Analysis and Design of FRP Reinforced Concrete Structures

1st Edition
0071847898 · 9780071847896
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality,  authenticity, or access to any online entitlements included with the product.The Most Complete FRP Reinforced Concrete Structure Analysi… Read More
Purchase Options
Request Review Copy
Chapter 1. Introduction
1.1. Evolution of FRP Reinforcement
1.2. Review of FRP Composites
1.3. The Importance of the Polymer Matrix
1.3.1. Matrix polymers
1.3.2. Polyester resins
1.3.3. Structural considerations in processing polymer matrix resins
1.3.4. Reinforcing fibers for structural composites
1.3.5. Effects of fiber length on laminate properties
1.3.6. Bonding interphase
1.3.7. Design considerations
1.4. Description of Fibers
1.4.1. Forms of glass fiber reinforcements
1.4.2. Behavior of glass fibers under load
1.4.3. Carbon fibers
1.4.4. Aramid fibers
1.4.5. Other organic fibers
1.4.6. Hybrid reinforcements
1.5. Manufacturing and Processing of Composites
1.5.1. Steps of fabrication scheme
1.5.2. Manufacturing methods
1.6. Sandwich Construction
1.7. Compression Molding
1.8. Multi-Axial Fabric for Structural Components
1.9. Fabrication of Stirrups
1.10. FRP Composites
1.11. FRP Composite Applications
1.12. Composite Mechanics
1.12.1. Laminate terminology
1.12.2. Composite product forms
1.13. Laminates Types and Stacking Sequence
Chapter 2. Material Characteristics of FRP Bars
2.1. Physical and Mechanical Properties
2.2. Physical Properties
2.3. Mechanical Properties and Behavior
2.3.1. Tensile behavior
2.3.2. Compressive behavior
2.3.3. Shear behavior
2.3.4. Bond behavior
2.4. Time-Dependent Behavior
2.4.1. Creep rupture
2.4.2. Fatigue
2.5. Durability
2.6. Recommended Materials and Construction Practices
2.6.1. Strength and modulus grades of FRP bars
2.6.2. Surface geometry, bar sizes, and bar identification
2.7. Construction Practices
2.7.1. Handling and storage of materials
2.7.2. Placement and assembly of materials
2.8. Quality Control and Inspection
Chapter 3. History and Uses of FRP Technology
3.1. FRP Composites in Japan
3.1.1. Development of FRP materials
3.1.2. Development of design methods in Japan
3.1.3. Typical FRP reinforced concrete structures in Japan
3.1.4. FRP for retrofitting and repair
3.1.5. Future uses of FRP
3.1.6. FRP construction activities in Europe
3.2. Reinforced and Prestressed Concrete: Some Applications
3.2.1. Rehabilitation and strengthening
3.2.2. Design guidelines
3.3. FRP Prestressing in the USA
3.3.1. Historical development of FRP tendons
3.3.2. Research and demonstration projects
3.3.3. Future prospects
Chapter 4. Design of RC Structures Reinforced with FRP Bars
4.1. Design Philosophy
4.1.1. Design material properties
4.1.2. Flexural design philosophy
4.1.3. Nominal flexural capacity
4.1.4. Strength reduction factor for flexure (?)
4.1.5. Check for minimum
4.1.6. Serviceability
4.2. Shear
4.2.1. Shear design philosophy
4.2.2. Shear failure modes
4.2.3. Minimum shear reinforcement
4.2.4. Shear failure due to crushing of the web
4.2.5. Detailing of shear stirrups
4.2.6. Punching shear strength of FRP reinforced, two-way concrete slab
4.3. ISIS Canada Design Approach for Flexure
4.3.1. Flexural strength
4.3.2. Serviceability
4.4. Design Approach for CFRP Prestressed Concrete Bridge Beams
4.4.1. Theoretical development of design equations
4.4.2 Deflection and stesses under service load condition
4.4.3. Nonlinear response
E4.1. Design Example 1
E4.2. Design Example 2
E4.3. Design Example 3
E4.4. Design Example 4: A Case Study Problem
E4.5. Design Example 5: Case Study of CFRP Prestressed Concrete Double-T Beam
E4.6. Design Example 6: Case Study of Cfrp Prestressed Concrete Box-Beam
E4.7. Design Example
Chapter 5. Design Philosophy for FRP External Strengthening Systems
5.1. Introduction
5.1.1. Non-prestressed soffit plates
5.1.2. End anchorage for unstressed (non-prestressed) plates
5.1.3. Prestressed soffit
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality,  authenticity, or access to any online entitlements included with the product.

The Most Complete FRP Reinforced Concrete Structure Analysis and Design Guide

This comprehensive reference provides proven design procedures for the use of fiber-reinforced polymer (FRP) materials for reinforcement, prestressing, and strengthening of reinforced concrete structures. The characteristics of FRP composite materials as well as the latest manufacturing techniques are discussed. Detailed illustrations and tables, design equations, end-of-chapter problems, and real-world case studies are included in this authoritative resource.

Analysis and Design of FRP Reinforced Concrete Structures covers:

  • Material characteristics of FRP bars
  • History and uses of FRP technology
  • Design of RC structures reinforced with FRP bars
  • Design philosophy for FRP external strengthening systems
  • Durability-based design approach for external FRP strengthening of RC beams

Purchase Options

We're committed to providing you with high-value course solutions backed by great service and a team that cares about your success.


Ebooks.com

Download file to PC or Mac desktops or laptops

Step 1. Download Adobe Digital Editions Both PC and Mac users will need to download Adobe Digital Editions to access their eBook. You can download Adobe Digital Editions at Adobe's website here.


Step 2. Register an Adobe ID if you do not already have one. (This step is optional, but allows you to open the file on multiple devices) Visit account.Adobe.com to register your Adobe account.


Step 3: Authorize Adobe Digital Editions using your Adobe ID. In Adobe Digital Editions, go to the Help menu. Choose “Authorize Computer.”


Step 4: Open your file with Adobe Digital Editions. Once you’ve linked your Adobe Digital Editions with your Adobe ID, you should be able to access your eBook on any device which supports Adobe Digital Editions and is authorized with your ID. If your eBook does not open in Adobe Digital Editions upon download, please contact customer service


ISBN10: 0071848118 | ISBN13: 9780071848114

US$117.00

Print Text

Receive via shipping:

  • Print bound version of the complete text


ISBN10: 0071847898 | ISBN13: 9780071847896

US$143.00