Integrated Wireless Propagation Models
Integrated Wireless Propagation Models

William C. Y. Lee, Ph.D.
David J. Y. Lee, MBA, Ph.D.
About the Authors

William C. Y. Lee, Ph.D., honorary dean of the School of Advanced Communications, Peking University, and formerly chief scientist of Vodafone Plc, is one of the original pioneers who developed wireless technology, and the Lee propagation point-to-point model in 1978, at Bell Labs. World-renowned for his development of commercial CDMA technology, Dr. Lee is a technologist, innovator, teacher, and writer. He is an honorable professor at Beijing University of Aeronautics and Astronautics, Southwest Jiao Tong University (Chengdu), and Taiwan National Chiao Tung University. Dr. Lee has written four prominent books and been granted more than 40 patents in the area of mobile communications. In 2014, he received the IEEE Vehicular Technology Society’s Hall of Fame Award, the society’s most prestigious award.

David J. Y. Lee, MBA, Ph.D., is a senior software development manager at Cisco Systems. Before that, he was a mobile solutions manager at Cisco. Dr. Lee was previously the vice president of product marketing and operations at Exio Communications and the director of strategic technology at Vodafone. He was also the RF director for Vodafone Romania, responsible for the nationwide planning, deployment, and optimization of the GSM network. Dr. Lee participated in many network optimization and merger and acquisition activities while with Vodafone in the United States, Europe, and Asia. He has had 10+ patents granted and 50+ papers published. Dr. Lee also worked at Motorola and Bell Labs.
Preface ... xiii
Acknowledgments .. xvii

1 Introduction to Modeling Mobile Signals in Wireless Communications 1
 1.1 Why Write This Book? 1
 1.2 Differences Between Free Space Communications and Mobile Communications in Propagation 1
 1.3 Treatment of Mobile Signals 2
 1.4 History of Developing the Lee Model 2
 1.5 Basic System Operations 3
 1.6 Mobile Radio Signal: Fading Signal 4
 1.6.1 Conditions of Mobile Signal Reception 4
 1.6.2 Types of Signal Fading 5
 1.6.3 Attributes of Signal Fading 6
 1.6.4 Flat Fading ... 11
 1.6.5 Signal Fading Caused by Time-Delay Spread:
 Frequency-Selective Fading 12
 1.6.6 Fading Signal Caused by Doppler Spread 13
 1.6.7 Short-Term and Long-Term Fading Signal 14
 1.7 Co-Channel Interference Created from the Frequency Reuse Scheme 14
 1.7.1 Basic Concepts ... 14
 1.7.2 Simulation Model 17
 1.7.3 Simulation Result 18
 1.8 Propagation Fading Models 22
 1.8.1 Rayleigh Fading Model—Short-Term Fading Model 22
 1.8.2 Log-Normal Fading Model—Long-Term Fading Model 23
 1.8.3 Estimating Unbiased Average Noise Level 24
 1.8.4 Rician Distribution 27
 1.9 Three Basic Propagation Mechanisms 28
 1.9.1 Reflection .. 28
 1.9.2 Diffraction ... 34
 1.9.3 Scattering .. 42
 1.10 Applications of the Prediction Models 42
 1.10.1 Classification of Prediction Models 42
 1.10.2 Prediction Models for Propagating in Areas of
 Different Sizes .. 43
Contents

1.10.3 Aspects for Predicting the Signal Strengths in a General Environment ... 43
1.10.4 Predicting the Interference Signals 45
1.11 Summary .. 46
References .. 46
Additional References ... 48

2 Macrocell Prediction Models—Part 1: Area-to-Area Models 51
2.1 Free Space Loss ... 51
2.2 Plane Earth Model ... 52
2.3 Young Model .. 53
2.4 Bullington Monograms .. 55
 2.4.1 Fading, Refraction from Tropospheric Transmission, and Diffraction .. 56
 2.4.2 Effects of Buildings and Trees 57
2.5 Egli Model—One of the Clutter Factor Models 58
2.6 The JRC Method .. 60
2.7 Terrain-Integrated Rough-Earth Model 61
 2.7.1 Description of TIREM .. 61
 2.7.2 Summary of Land Propagation Formulas 62
2.8 Carey Model ... 65
2.9 CCIR Model ... 66
 2.9.1 Description of the Model 66
2.10 Blomquist–Ladell and Edwards–Durkin Models 68
2.11 Ibrahim–Parsons Model .. 70
 2.11.1 Findings from the Empirical Data 70
 2.11.2 Two Proposed Models 73
2.12 Okumura–Hata and the Cost 231 Hata Models 75
 2.12.1 Okumura Method Hata Model 75
 2.12.2 Cost 231 Hata Model 80
2.13 Walfisch–Bertoni Model 81
2.14 Ikegami Model .. 83
2.15 Walfisch–Ikegami Model .. 84
2.16 Flat-Edge Model .. 87
2.17 ITU Model ... 89
 2.17.1 ITU-R Recommendation P.1546 90
 2.17.2 Recommendation ITU-R P.530-9 92
2.18 On-Body Model ... 94
 2.18.1 Model 1 ... 94
 2.18.2 Model 2 ... 94
2.19 Summary ... 95
References .. 95

3 Macrocell Prediction Models—Part 2: Point-to-Point Models 99
3.1 The Lee Model .. 99
3.1.1 Implementation of the Lee Macrocell Model 100
3.1.2 The Lee Single Breakpoint Model—
A Point-to-Point Model 101
3.1.3 Variations of the Lee Model 116
3.1.4 Effects of Terrain Elevation on the Signal Strength
Prediction .. 119
3.1.5 Effects of Morphology on the Signal Strength
Prediction .. 122
3.1.6 Water Enhancement 131
3.1.7 Effect of Antenna Orientation 138
3.1.8 Prediction Data Files 155
3.2 Fine-Tuning the Lee Model 157
3.2.1 The Terrain Normalization Method 158
3.2.2 Measurement Data Characteristics 159
3.2.3 Comparison of Measured and Predicted Curve
for the Nonobstructive Case 160
3.2.4 Comparison of Measured and Predicted Curves
for the Obstructive Paths 161
3.2.5 Conclusion ... 168
3.3 Enhanced Lee Macrocell Prediction Model 169
3.3.1 Introduction ... 169
3.3.2 The Algorithm .. 169
3.3.3 Measured versus Predicted Data 170
3.3.4 Conclusion ... 174
3.4 Longley–Rice Model .. 175
3.4.1 Point-to-Point Model Prediction 175
3.4.2 Area Model Prediction 175
3.5 Summary ... 178
3.5.1 Ways of Implementation of Models 181
3.5.2 Features Among Models 181
References ... 183

4 Microcell Prediction Models 187
4.1 Introduction .. 187
4.2 The Basic Lee Microcell Prediction Model 188
4.2.1 Basic Principle and Algorithm 188
4.2.2 Input Data for Microcell Prediction 199
4.2.3 The Effect of Buildings on Microcell
Prediction ... 205
4.2.4 The Terrain Effect 207
4.2.5 Prediction Model with Four Situations 210
4.2.6 Characteristics of the Measured Data 212
4.2.7 Validation of the Model: Measured versus
Predicted ... 214
4.2.8 Integrating Other Attributes into the Model 219
5.4.1 The Motley–Keenan Model (Empirical) and a Comparison with the Lee Model
5.4.2 Ericsson Multiple-Breakpoint Model (Empirical)
5.5 ITU Model
5.5.1 COST 231 Multiwall Model (Empirical)
5.5.2 ITU-R 1238 (Empirical)
5.6 Physical Models—Application of Geometrical Theory of Diffraction (GTD)
5.6.1 Ray-Tracing Model for In-Building (Picocell)
5.6.2 FDTD
5.7 Summary and Conclusions
References

6 The Lee Comprehensive Model—Integration of the Three Lee Models
6.1 Introduction
6.2 Integrating the Three Lee Models
6.2.1 Validation of the Macrocell Model
6.2.2 Validation of the Microcell Model
6.2.3 Validation of the In-Building Model (Picocell Model)
6.3 System Design Aspects Using Different Prediction Models
6.3.1 Preparing to Design a System
6.3.2 Design Parameters and Input Data
6.3.3 System Coverage in General
6.3.4 CDMA Coverage
6.3.5 System Design in Special Areas with New Technologies
6.4 User’s Menu of the Lee Comprehensive Model
6.4.1 The Overall System Design Chart from the Lee Comprehensive Model
6.4.2 In-Building Cell—Point-by-Point Analysis for the Lee In-Building Model
6.4.3 Microcell—Point-by-Point Analysis for the Lee Microcell Model
6.4.4 Macrocell—Point-by-Point Analysis for the Lee Macrocell Model
6.5 How to Use Prediction Tools
6.5.1 Radio Communication Link—The Channel
6.5.2 Types of Noise, Losses, and Gain
6.5.3 Received Signal Power and Noise Power
6.5.4 Required Information for Calculating Link Budget
6.5.5 Link Budget Analysis
6.6 How to Plan and Design a Good Wireless System
6.6.1 Understanding the System Requirement
6.6.2 Choosing the Right Prediction Model
6.7 Propagation Prediction on Different Transmission Media 383
 6.7.1 Prediction of Satellite Communication Signals 383
 6.7.2 Prediction of Underwater Communication Signals 386
 6.7.3 Prediction of Aeronautical Communication Signal 388
 6.7.4 Prediction of Bullet Train Communication Signal 392
 6.7.5 Millimeter Wave Signal .. 392
6.8 Summary and Conclusions .. 393
References ... 395

Index .. 399

(A listing of abbreviations and acronyms is available at www.mhprofessional
.com/iwpm.)
Preface

Ever since I created the macrocell prediction model in 1977 at Bell Labs, many people wanted to know the details of the model. AT&T had held it as proprietary and did not disclose it. Afterward, I created the microcell model in 1988. Both models are briefly described in my previous books, but the whole models were not fully disclosed at that time because of Pactel’s proprietary interest. In 1991, David Lee worked for me at Pactel (the company was renamed AirTouch in 1994), making many field measurements in the different countries of Pactel’s markets for deploying the desired cellular systems. In the meantime, the merit of these two models as a tool in deploying the systems in those countries has been shown. Starting in 1995, the two of us had worked on the in-building (picocell) model, which used mostly empirical data. In 2008, David asked me if I wanted to write a book on the Lee model. He would do all the preparation work for the book. From his hard work collecting all the necessary material, this book resulted.

Chapter 1 introduces all the terms and describes the natural phenomena in the mobile communications environment. Chapter 2 introduces the macrocell models that have been created by others. They are the most popular area-to-area models used in the industry. Chapter 3 introduces the point-to-point prediction models in the macrocell models. There are two models. The Lee model is for short distances (<10 miles), and the Longly–Rice model is for long distances (>10 miles). Chapter 4 introduces the microcell models. The Lee microcell model is introduced in the first part of the chapter. The near-in distance used in microcell prediction is clearly defined based on the equations derived in my earlier published books. A lot of empirical data collected from different areas, in both domestic and foreign markets, were used to verify the Lee model.

Chapter 5 introduces the Lee in-building model for both picocell and femtocell. The newly defined close-in distance for the indoor environment is derived. Many earlier papers regarding the Lee in-building model published by David and me have been modified in this book, such as in the case of “same floor” and especially in the case of “interfloor,” shown in Sec. 5.5.3. In Chap. 6, the integration of the three Lee models is described. David has made a software tool to plot a prediction signal strength chart covering the three different Lee models.

In this book, many other prediction models are included with their merits for readers to understand besides the Lee models. Also, the integration of the three Lee models—macrocell, microcell, and in-building (picocell and femtocell)—is displayed and used for future planning of an overall cellular system in a specific area. Users should understand that a good prediction model can be accepted if its standard
deviation of prediction error is within ±8 dB. In small cells, the prediction error should be ±5 dB.

Measuring signal strengths in a large area is costly. Therefore, we may depend on many prediction charts on a specified coverage generated roughly by area-to-area models. Each chart represents a specified environment. Then the Lee model derives a point-to-point model using a terrain map and the antenna effective height to fine-tune the signal strength. The point-to-point prediction model is useful when cell size is large. When cells become small, measuring signal strength in a small area is considerably easier and less expensive; we can collect more empirical data in a particular confined area. Thus, the prediction model becomes more accurate based on the empirical data.

How was the Lee model created? In 1976, engineers at Bell Labs were discussing the deployment of a cellular system in an area without doing a massive measurement in that area. Then I wrote an internal memorandum about my point-to-point prediction based on Okumura et al.’s legendary paper in 1968, which was the first paper to provide the ground work for an area-to-area model. At that time, I had to prove to Bell Labs engineers that the tool was working. Initially, in 1976, I had requested engineers from the Tri-State Telephone Team (which consisted of New York Bell, New Jersey Bell, and Connecticut Bell) to assist me because they could provide me with the measured data that I wanted in their territory. Also, they had the manpower to generate the coarse terrain charts I wanted. First, I had used the commercial 50,000:1 scale topographical maps printed by the U.S. Defense Mapping Agency. Each map was roughly 5 by 8 miles (8 by 13 km). The contour lines were in 20-ft increments. To make plotting a terrain contour along a mobile path on a map easier, we generated grid maps. Each grid was about one-half of a square kilometer. Each map had 18 by 24 grids. The Tri-State engineers used an eyeball average of the terrain altitudes in each grid. Each grid had one value. Each map had 432 (18 by 24) values, and one in each grid. It was a tedious job. After the grid maps were generated, we started to pick the routes in the Tri-State territory for getting the measured data. Every planned route on a particular map was drawn, crossing the grids where the route laid to make the signal strength measurements on that route. The altitudes along the route were plotted according to the eyeball average altitudes. Once the transmitter antenna was set up with its known location, height, power, and gain, as well as the height and gain of the mobile unit, the Tri-State engineers passed information on to me. I was the one to use hand calculations according to the eyeball values in the corresponding grids on the terrain contour map to plot the predicted signal strength curve along the mobile path and gave that to the Tri-State engineers before the measurement. The next day, the Tri-State engineers took the measured data on the particular planned route and compared these with my predicted values. I never went out and participated in taking measurements. Therefore, it was a totally independent process between the measurement and prediction.

The process went on for more than a year, and the predicted values were very good compared with the measured data in general. Not only was my prediction tool good, but the eyeball average of altitudes also turned out to be a good method. After more than a year of doing hand calculations to predict signal strengths in many different Tri-State areas, I was like a computer. At that time, I was young and had a lot of energy, and I was not afraid of my colleagues teasing me.

Finally, Bell Labs decided to use my tool in 1978. The eyeball average proved that the coarse grid contour maps were adequate. Then the 1° by 1° tape scaling 250,000:1 was purchased from the Defense Mapping Agency Topographic Center (DMATC).
A software tool was created using the 1° by 1° tape for inputting the terrain data and my prediction tool for system planning. It was called ACE, later renamed ADMS. The planning engineers at AT&T and later the Baby Bells were trained to use the tool in their cellular markets starting in 1983. On October 30, 1979, Mr. C. S. Phelan, patent attorney of Bell Labs, wrote me a letter (printed on page 20 of Lee’s Essentials of Wireless Communications [McGraw-Hill, 2001]) and acknowledged my contribution from a Bell Labs internal memorandum, “A New Mobile Radio Propagation Model,” Case 39445-7, March 30, 1979, written by me. The use of the terrain contour data maps with the effective antenna height gain to predict the signal strength at any known location was the invention of my point-to-point prediction model. Bell Labs did not want to patent this model but rather wanted to keep it for internal use.

In 1980, Hata wrote a paper on his area-to-area model and I was one of the reviewers. Also, I was the associate editor of IEEE Transactions on Vehicular Technology to accept his paper. Later, the Hata model was adopted by CCIR. I am very glad that it became an internationally well-known model. Readers may not know that I have been working in this field for 50 years. If you are interested in the past, I have many stories to tell and most of them are good ones.

This is my fourth book that has been published by McGraw-Hill. I hope this book will provide readers with clear guidelines to further implement the propagation models in future 4G or 5G systems.

William C. Y. Lee, Ph.D.
In preparing this book, we have drawn on many models that are related to the Lee model. We should apologize for not including all the models in our book because of page limitations. We are thankful for the kind advice of many scholars—Prof. Bingli Jiao of Beijing University, China; Prof. Lajos Hanzo of the University of Southampton, UK; Prof. Ping-Zhi Fan of Southwest Jiaotong University, China; Prof. Yi-Bing Lin of National Chiao Tung University, ROC; Dr. Joseph Shapira of Netvision Inc., Israel; and Prof. J. R. Cruz of the University of Oklahoma—during the preparation of this book.

We also should thank Mr. Sherman Yang for his assistance in proofreading the manuscript. Mr. Steve Chapman, Senior Publisher, and Mr. Michael McCabe, Senior Editor, at McGraw-Hill, and Ms. Raghavi Khullar and Ms. Kritika Kaushik, Project Managers at Cenveo Publisher Services, have helped us publish this book. Without their encouragement and patience, this book would not have been published.

Finally, we would like to thank our wives for giving us the time to write and finish this book. Also, this book may inspire our children and grandchildren

Bill’s two grandchildren, Alex and Sophia
David’s son, Richard

to follow our steps in their future careers.

William C. Y. Lee, Ph.D.
David J. Y. Lee, MBA, Ph.D.
Integrated Wireless Propagation Models