About the Author

Bob Cordell is an electrical engineer who has been deeply involved in audio since his adventures with vacuum tube designs in his teen years. He is an equal-opportunity designer to this day, having built amplifiers with vacuum tubes, bipolar transistors, and MOSFETs. Bob is also a prolific designer of audio test equipment, including a high-performance THD analyzer and many purpose-built pieces of audio gear. He has published numerous articles and papers on power amplifier design and distortion measurement in the popular press and in the Journal of the Audio Engineering Society. In 1983 he published a power amplifier design combining vertical power MOSFETs with error correction, achieving unprecedented distortion levels of less than 0.001% at 20 kHz.

Bob is also an avid DIY loudspeaker builder, and has combined this endeavor with his electronic interests in the design of powered audiophile loudspeaker systems. He and his colleagues have presented audiophile listening and measurement workshops at the Rocky Mountain Audio Fest and the Home Entertainment Show.

As an electrical engineer, Bob has worked at Bell Laboratories and other telecommunications companies, where his work has included design of integrated circuits and fiber optic communications systems. He maintains an audiophile website at www.cordellaudio.com, where diverse material on audio electronics, loudspeakers, and instrumentation can be found.
There are several very good books on audio power amplifier design already out there, so you might ask why we need yet another book on power amplifier design. Hopefully this preface will answer that question. However, the short answer can be found in two observations. First, there have been many developments in audio power amplifier design since the release of most of the prior books. Second, there are some important topics that deserve more depth of coverage.

Designing Audio Power Amplifiers is written to address many advanced topics and important design subtleties. At the same time, however, it has enough introductory and tutorial coverage to allow designers relatively new to the field to absorb the material of the book without being overwhelmed. To this end, the book starts off at a relaxing pace that helps the reader develop an intuitive feel and understanding for amplifier design. Although this book covers advanced subjects, highly involved mathematics is kept to a minimum—much of that is left to the academics. Design choices and decisions are explained and analyzed.

This is not just a cookbook; it is intended to teach the reader how to think about power amplifier design and understand the many concepts and nuances, then analyze and synthesize the many possible variations of amplifier design.

I have divided the book into six parts. Part 1 introduces audio power amplifier design and includes the basics. This part is designed to be readable and friendly to those with less technical background while still providing a very sound footing for the more detailed design discussions that follow. In this part I show how a simple power amplifier design evolves in several steps to a modern architecture, describing how performance deficiencies are mitigated with circuit improvements at each step in the evolution. Even experienced designers may gain valuable insights here.

Part 2 delves into the design of advanced power amplifiers with state-of-the art performance. Crossover distortion, one of the most problematic distortions in power amplifiers, is covered in depth. Special attention is paid to dynamic crossover distortion, which is less well understood. This part also includes a detailed treatment of MOSFET power amplifiers, error correction techniques, advanced feedback compensation, ultra-low distortion drive circuits, and DC servos.

Part 3 covers those real-world design considerations that influence sound quality and reliability, including power supplies and grounding, short circuit and safe area protection, and amplifier behavior when driving difficult loads. Thermal design and thermal stability are given special attention. Electromagnetic interference ingress and egress via the input, output, and mains ports of the amplifier are also treated here.

SPICE simulation can be very important to power amplifier design, and its use is described in detail in Part 4. Even those with no SPICE experience will learn how to use this valuable tool, helped along by a tutorial chapter and ready-to-run amplifier simulations and transistor models available at www.cordellaudio.com. A full chapter describes how you can create your own accurate SPICE models for BJT and MOSFET transistors, many of which are poorly modeled by manufacturers. Numerous approaches to distortion measurement are also explained in Part 4. I’ve also described
some techniques for achieving the high sensitivity required to measure the low-
distortion designs discussed in the book. Less well-known distortion measurements,
such as TIM, PIM, and IIM, are also covered here. In the quest for meaningful
 correspondence between listening and measurement results, other non-traditional
amplifier tests are also described.

Part 5, Topics in Amplifier Design, covers all of those other important matters that
do not fit neatly into the other parts. Advanced designers as well as audiophiles will
find many interesting topics in this part. Some of the controversies in audio, such as the
use of negative feedback, are addressed here. For balance, the design of amplifiers
without negative feedback is covered. Integrated circuit power amplifiers and drivers
are also discussed.

Class D amplifiers are playing a more important role in audio amplification as every
day passes. They have enjoyed vast improvements in performance over the last several
years and can be expected to improve much further in the future. Four chapters in Part 6
cover this exciting technology.

Many of the following topics covered in "Designing Audio Power Amplifiers" should
prove especially interesting to readers familiar with earlier texts:

• Ultra-low distortion input and voltage amplifier topologies
• Non-conventional feedback compensation techniques
• Lateral and vertical MOSFET power amplifiers
• Output stage error correction circuits
• Thermal stability analysis of BJT and MOSFET output stages
• Output transistors with temperature tracking diodes
• Integrated circuit amplifiers and drivers
• SPICE simulation and modeling for amplifier design
• Amplifier measurement instrumentation and techniques
• PC-based instrumentation for amplifier evaluation
• How amplifiers misbehave and why they sound different
• Sources of distortion in class D amplifiers
• PWM, sigma-delta, and direct digital class D amplifiers

No single text can cover all aspects of audio power amplifier design. It is my hope
that an experienced designer or a hobbyist who seeks to learn more about audio
amplifier design will find this book most helpful. I also hope that this text will provide
a sound basis for those wishing to learn analog circuit design.

Bob Cordell
In this chapter we’ll look at the design of a basic power amplifier in detail. Some information about transistors will first be discussed, followed by a simple analysis of the basic building block circuits that are inevitably used to build a complete amplifier circuit. This will provide a good foundation for the detailed analysis of the basic amplifier that follows. Chapter 3 will then take us on a tour of amplifier design, evolving and assessing a design as its performance is improved to a high level.

2.1 About Transistors

The bipolar junction transistor (BJT) is the primary building block of most audio power amplifiers. This section is not meant to be an exhaustive review of transistors, but rather presents enough knowledge for you to understand and analyze transistor amplifier circuits. More importantly, transistor behavior is discussed in the context of power amplifier design, with many relevant tips along the way.

Current Gain

If a small current is sourced into the base of an NPN transistor, a much larger current flows in the collector. The ratio of these two currents is the current gain, commonly called \(\beta \) or \(h_{fe} \). Similarly, if one sinks a small current from the base of a PNP transistor, a much larger current flows in its collector.

The current gain for a typical small-signal transistor often lies between 50 and 200. For an output transistor, \(\beta \) typically lies between 20 and 100. Beta can vary quite a bit from transistor to transistor and is also a mild function of the transistor current and collector voltage.

Because transistor \(\beta \) can vary quite a bit, circuits are usually designed so that their operation does not depend heavily on the particular value of \(\beta \) for its transistors. Rather, the circuit is designed so that it operates well for a minimum value of \(\beta \) and better for very high \(\beta \). Because \(\beta \) can sometimes be very high, it is usually bad practice to design a circuit that would misbehave if \(\beta \) became very high. The transconductance (\(gm \)) of the transistor is actually the more predictable and important design parameter (as long as \(\beta \) is high enough not to matter much). For those unfamiliar with the term, transconductance of a transistor is the change in collector current in response to a given change in base-emitter voltage, in units of siemens (S; amps per volt).

\[
gm = \frac{\Delta I_c}{\Delta V_{be}}
\]

The familiar collector current characteristics shown in Figure 2.1 illustrate the behavior of transistor current gain. This family of curves shows how the collector current
increases as collector-emitter voltage \(V_{ce} \) increases, with base current as a parameter. The upward slope of each curve with increasing \(V_{ce} \) reveals the mild dependence of \(\beta \) on collector-emitter voltage. The spacing of the curves for different values of base current reveals the current gain. Notice that this spacing tends to increase as \(V_{ce} \) increases, once again revealing the dependence of current gain on \(V_{ce} \). The spacing of the curves may be larger or smaller between different pairs of curves. This illustrates the dependence of current gain on collector current. The transistor shown has \(\beta \) of about 50.

Beta can be a strong function of current when current is high; it can decrease quickly with increases in current. This is referred to as beta droop and can be a source of distortion in power amplifiers. A typical power transistor may start with a \(\beta \) of 70 at a collector current of 1 A and have its \(\beta \) fall to 20 or less by the time \(I_c \) reaches 10 A. This is especially important when the amplifier is called on to drive low load impedances. This is sobering in light of the current requirements illustrated in Table 1.3.

Base-Emitter Voltage

The bipolar junction transistor requires a certain forward bias voltage at its base-emitter junction to begin to conduct collector current. This turn-on voltage is usually referred to as \(V_{be} \). For silicon transistors, \(V_{be} \) is usually between 0.5 and 0.7 V. The actual value of \(V_{be} \) depends on the transistor device design and the amount of collector current \((I_c) \).

The base-emitter voltage increases by about 60 mV for each decade of increase in collector current. This reflects the logarithmic relationship of \(V_{be} \) to collector current. For the popular 2N5551, for example, \(V_{be} = 600 \) mV at 100 \(\mu \)A and rises to 720 mV at 10 mA. This corresponds to a 120 mV increase for a two-decade (100:1) increase in collector current.

Tiny amounts of collector current actually begin to flow at quite low values of forward bias \((V_{be}) \). Indeed, the collector current increases exponentially with \(V_{be} \). That is why it looks like there is a fairly well-defined turn-on voltage when collector current is plotted against \(V_{be} \) on linear coordinates. It becomes a remarkably straight line when
the log of collector current is plotted against V_{be}. Some circuits, like multipliers, make great use of this logarithmic dependence of V_{be} on collector current.

Put another way, the collector current increases exponentially with base-emitter voltage, and we have the approximation

$$I_C = I_S e^{(V_{be}/V_T)}$$

where the voltage V_T is called the *thermal voltage*. Here V_T is about 26 mV at room temperature and is proportional to absolute temperature. This plays a role in the temperature dependence of V_{be}. However, the major cause of the temperature dependence of V_{be} is the strong increase with temperature of the saturation current I_S. This ultimately results in a negative temperature coefficient of V_{be} of about -2.2 mV/°C.

Expressing base-emitter voltage as a function of collector current, we have the analogous approximation

$$V_{be} = V_T \ln (I_c/I_S)$$

where $\ln (I_c/I_S)$ is the natural logarithm of the ratio I_c/I_S. The value of V_{be} here is the *intrinsic* base-emitter voltage, where any voltage drops across physical base resistance and emitter resistance are not included.

The base-emitter voltage for a given collector current typically decreases by about 2.2 mV for each degree Celsius increase in temperature. This means that when a transistor is biased with a fixed value of V_{be}, the collector current will increase as temperature increases. As collector current increases, so will the power dissipation and heating of the transistor; this will lead to further temperature increases and sometimes a vicious cycle called *thermal runaway*. This is essentially positive feedback in a local feedback system.

The V_{be} of power transistors will start out at a smaller voltage at a low collector current of about 100 mA, but may increase substantially to 1 V or more at current in the 1 to 10-A range. At currents below about 1 A, V_{be} typically follows the logarithmic rule, increasing by about 60 mV per decade of increase in collector current. As an example, V_{be} might increase from 550 mV at 150 mA to 630 mV at 1 A. Even this is more than 60 mV per decade.

Above about 1 A, V_{be} versus I_c for a power transistor often begins to behave linearly like a resistance. In the same example, V_{be} might increase to about 1.6 V at 1 A. This would correspond to effectively having a resistance of about 0.1 Ω in series with the emitter. The actual emitter resistance is not necessarily the physical origin of the increase in V_{be}. The voltage drop across the base resistance R_B due to base current is often more significant. This voltage drop will be equal to $R_B(I_c/\beta)$. The effective contribution to resistance as seen at the emitter by R_B is thus R_B/β. The base resistance divided by β is often the dominant source of this behavior.

Consider a power transistor operating at $I_c = 10$ A and having a base resistance of 4 Ω, an operating β of 50, and an emitter resistance of 20 mΩ. Base current will be 200 mA and voltage drop across the base resistance will be 0.8 V. Voltage drop across the emitter resistance will be 0.2 V. Adding the intrinsic V_{be} of perhaps 660 mV, the base-emitter voltage becomes 1.66 V. It is thus easy to see how rather high V_{be} can develop for power transistors at high operating currents.

The Gummel Plot

If the log of collector current is plotted as a function of V_{be}, the resulting diagram is very revealing. As mentioned above, it is ideally a straight line. The diagram becomes even
more useful and insightful if base current is plotted on the same axes. This is now called a Gummel plot. It sounds fancy, but that is all it is. The magic lies in what it reveals about the transistor. A Gummel plot is shown in Figure 2.2.

In practice, neither the collector current nor the base current plots are straight lines over the full range of V_{be} and the bending illustrates various nonidealities in the transistor behavior. The vertical distance between the lines corresponds to the β of the transistor, and the change in distance shows how β changes as a function of V_{be} and, by extension, I_c. The curves in Figure 2.2 illustrate the typical loss in transistor current gain at both low and high current extremes.

Transconductance

While transistor current gain is an important parameter and largely the source of its amplifying ability, the transconductance of the transistor is perhaps the most important characteristic used by engineers when doing actual design. Transconductance, denoted as g_m, is the ratio of the change in collector current to the change in base voltage.

The unit of measure of transconductance is the siemens (S), which corresponds to a current change of 1 A for a change of 1 V. This is the inverse of the measure of resistance, the ohm (it was once called the mho, ohm spelled backward). If the base-emitter voltage of a transistor is increased by 1 mV, and as a result the collector current increases by 40 μA, the transconductance of the transistor is 40 milliseimens (mS).

The transconductance of a bipolar transistor is governed by its collector current. This is a direct result of the exponential relationship of collector current to base-emitter voltage. The slope of that curve increases as I_c increases; this means that transconductance also increases. Transconductance is given simply as

$$g_m = \frac{I_c}{V_T}$$

where V_T is the thermal voltage, typically 26 mV at room temperature. At a current of 1 mA, transconductance is 1 mA/26 mV = 0.038 S.
The inverse of gm is a resistance. Sometimes it is easier to visualize the behavior of a circuit by treating the transconductance of the transistor as if it were a built-in dynamic emitter resistance r_e'. This resistance is just the inverse of gm, so we have

$$r_e' = \frac{V_T}{I_c} = \frac{0.026}{I_c} \quad \text{(at room temperature)}$$

In the above case $r_e' = 26 \, \Omega$ at a collector current of 1 mA.

An important approximation that will be used frequently is that $r_e' = \frac{26 \, \Omega}{I_c}$ where I_c is expressed in milliamperes. If a transistor is biased at 10 mA, r_e' will be about 2.6 \, \Omega. The transistor will act as if a change in its base-emitter voltage is directly impressed across 2.6 \, \Omega; this causes a corresponding change in its emitter current and very nearly the same change in its collector current. This forms the basis of the common-emitter (CE) amplifier.

It is important to recognize that $gm = 1/r_e'$ is the intrinsic transconductance, ignoring the effects of base and emitter resistance. Actual transconductance will be reduced by emitter resistance (R_E) and R_B/β being added to r_e' to arrive at net transconductance. This is especially important in the case of power transistors.

Input Resistance

If a small change is made in the base-emitter voltage, how much change in base current will occur? This defines the effective input resistance of the transistor. The transconductance dictates that if the base-emitter voltage is changed by 1 mV, the collector current will change by about 40 \, \mu A if the transistor is biased at 1 mA. If the transistor has a β of 100, the base current will change by 0.38 \, \mu A. Note that the β here is the effective current gain of the transistor for small changes, which is more appropriately referred to as the AC current gain or AC beta (β_{AC}). The effective input resistance in this case is therefore about $1 \, \text{mV} / 0.38 \, \mu A = 2.6 \, k\Omega$. The effective input resistance is just β_{AC} times r_e'.

Early Effect

The Early effect manifests itself as finite output resistance at the collector of a transistor and is the result of the current gain of the transistor being a function of the collector-base voltage. The collector characteristic curves of Figure 2.1 show that the collector current at a given base current increases with increased collector voltage. This means that the current gain of the transistor is increasing with collector voltage. This also means that there is an equivalent output resistance in the collector circuit of the transistor.

The increase of collector current with increase in collector voltage is called the Early effect. If the straight portions of the collector current curves in Figure 2.1 are extrapolated to the left, back to the X axis, they will intersect the X axis at a negative voltage. The value of this voltage is called the Early voltage (V_A). The slope of these curves represents the output resistance r_o of the device.

Typical values of V_A for small-signal transistors lie between 20 and 200 V. A very common value of V_A is 100 V, as for the 2N5551. The output resistance due to the Early effect decreases with increases in collector current. A typical value of this resistance for a small-signal transistor operating at 1 mA is on the order of 100 k\Omega.

The Early effect is especially important because it acts as a resistance in parallel with the collector circuit of a transistor. This effectively makes the net load resistance on the collector smaller than the external load resistance in the circuit. As a result, the gain of a common-emitter stage decreases. Because the extra load resistance is a function of
collector voltage and current, it is a function of the signal and is therefore nonlinear and so causes distortion.

The Early effect can be modeled as a resistor r_o connected from the collector to the emitter of an otherwise “perfect” transistor [1]. The value of r_o is

$$r_o = \frac{(V_A + V_c)}{I_c}$$

For the 2N5551, with a V_A of 100 and operating at $V_c = 10$ V and $I_c = 10$ mA, r_o comes out to be 11 kΩ. The value of r_o is doubled as the collector voltage swings from very small voltages to a voltage equal to the Early voltage.

It is important to understand that this resistance is not, by itself, necessarily the output resistance of a transistor stage, since it is not connected from collector to ground. It is connected from collector to emitter. Any resistance or impedance in the emitter circuit will significantly increase the effective output resistance caused by r_o.

The Early effect is especially important in the VAS of an audio power amplifier. In that location the device is subjected to very large collector voltage swings and the impedance at the collector node is quite high due to the usual current source loading and good buffering of the output load from this node.

A 2N5551 VAS transistor biased at 10 mA and having no emitter degeneration will have an output resistance on the order of 14 kΩ at a collector-emitter voltage of 35 V. This would correspond to a signal output voltage of 0 V in an arrangement with ±35 V power supplies. The same transistor with 10:1 emitter degeneration will have an output resistance of about 135 kΩ.

At a collector-emitter voltage of only 5 V (corresponding to a ~30-V output swing) that transistor will have a reduced output resistance of 105 kΩ. At a collector-emitter voltage of 65 V (corresponding to a +30-V output swing), that transistor will have an output resistance of about 165 kΩ. These changes in output resistance as a result of signal voltage imply a change in gain and thus second harmonic distortion.

Because the Early effect manifests itself as a change in the $β$ of the transistor as a function of collector voltage, and because a higher-$β$ transistor will require less base current, it can be argued that a given amount of Early effect has less influence in some circuits if the $β$ of the transistor is high. A transistor whose $β$ varies from 50 to 100 due to the Early effect and collector voltage swing will have more effect on circuit performance in many cases than a transistor whose $β$ varies from 100 to 200 over the same collector voltage swing. The variation in base current will be less in the latter than in the former. For this reason, the product of $β$ and V_A is an important figure of merit (FOM) for transistors. In the case of the 2N5551, with a current gain of 100 and an Early voltage V_A of 100 V, this FOM is 10,000 V. The FOM for bipolar transistors often lies in the range of 5000 to 50,000 V.

$$\text{Early effect FOM} = \beta \times V_A$$

Junction Capacitance

All BJTs have base-emitter capacitance (C_{be}) and collector-base capacitance (C_{cb}). This limits the high-frequency response, but also can introduce distortion because these junction capacitances are a function of voltage.

The base, emitter, and collector regions of a transistor can be thought of as plates of a capacitor separated by nonconducting regions. The base is separated from the emitter
by the base-emitter junction, and it is separated from the collector by the base-collector junction. Each of these junctions has capacitance, whether it is forward biased or reverse biased. Indeed, these junctions store charge, and that is a characteristic of capacitance.

A reverse-biased junction has a so-called depletion region. The depletion region can be thought of roughly as the spacing of the plates of the capacitor. With greater reverse bias of the junction, the depletion region becomes larger. The spacing of the capacitor plates is then larger, and the capacitance decreases. The junction capacitance is thus a function of the voltage across the junction, decreasing as the reverse bias increases.

This behavior is mainly of interest for the collector-base capacitance C_{cb} since in normal operation the collector-base junction is reverse biased while the base-emitter junction is forward biased. It will be shown that the effective capacitance of the forward-biased base-emitter junction is quite high.

The variance of semiconductor junction capacitance with reverse voltage is taken to good use in varactor diodes, where circuits are electronically tuned by varying the reverse bias on the varactor diode. In audio amplifiers, the effect is an undesired one, since capacitance varying with signal voltage represents nonlinearity. It is obviously undesirable for the bandwidth or high-frequency gain of an amplifier stage to be varying as a function of the signal voltage.

The collector-base capacitance of the popular 2N5551 small-signal NPN transistor ranges from a typical value of 5 pF at 0 V reverse bias (V_{cb}) down to 1 pF at 100 V. For what it’s worth, its base-emitter capacitance ranges from 17 pF at 0.1-V reverse bias to 10 pF at 5 V reverse bias. Remember, however, that this junction is usually forward biased in normal operation. The junction capacitances of a typical power transistor are often about two orders of magnitude larger than those of a small-signal transistor.

Speed and f_T

The AC current gain of a transistor falls off at higher frequencies in part due to the need for the input current to charge and discharge the relatively large capacitance of the forward-biased base-emitter junction.

The most important speed characteristic for a BJT is its f_T, or transition frequency. This is the frequency where the AC current gain β_{AC} falls to approximately unity. For small-signal transistors used in audio amplifiers, f_T will usually be on the order of 50 to 300 MHz. A transistor with a low-frequency β_{AC} of 100 and an f_T of 100 MHz will have its β_{AC} begin to fall off (be down 3 dB) at about 1 MHz. This frequency is referred to as f_{β}.

The effective value of the base-emitter capacitance of a conducting BJT can be shown to be approximately

$$C_{be} = \frac{gm}{\omega_T}$$

where ω_T is the radian frequency equal to $2\pi f_T$ and gm is the transconductance.

Because $gm = I_c/V_T$, one can also state that

$$C_{be} = \frac{I_c}{(V_T + \omega_T)}$$

This capacitance is often referred to as C_v for its use in the so-called hybrid pi model. Because transconductance increases with collector current, so does C_{be}. For a transistor with a 100 MHz f_T, and operating at 1 mA, the effective base-emitter capacitance will be about 61 pF.
Power transistors usually have a much lower value of f_T, often in the range of 1 to 8 MHz for conventional power devices. The effective base-emitter capacitance for a power transistor can be surprisingly large. Consider a power transistor whose f_T is 2 MHz. Assume it is operating at $I_c = 1$ A. Its transconductance will be $I_c/V_{T} = 1.0/0.026 = 38.5$ S. Its ω_T will be 12.6 Mrad/s. Its C_{be} will be

$$C_{be} = \frac{g_m}{\omega_T} = 3.1 \mu F$$

Needless to say, this is a real eye-opener!

This explains why it can be difficult to turn off a power transistor quickly. Suppose the current gain of the power transistor is 50, making the base current 20 mA. If that base-current drive is removed and the transistor is allowed to turn off, the V_{be} will change at a rate of

$$I_b/C_{\pi} = \frac{0.02}{3.1 \times 10^{-6}} = 6.4 \text{ mV/\mu s}$$

Recall that a 60 mV change in V_{be} will change the collector current by a factor of about 10. This means that it will take about 9 μs for the collector current to fall from 1 to 0.1 A. This illustrates why it is important to actively pull current out of the base to turn off a transistor quickly. This estimate was only an approximation because it was assumed that C_{π} was constant during the discharge period. It was not, since I_c was decreasing. However, the base current, which was the discharge current in this case, was also decreasing during the discharge period. The decreasing C_{π} and the decreasing base current largely cancel each other's effects, so the original approximation was not too bad.

In a real circuit there will usually be some means of pulling current out of the base, even if it is just a resistor from base to emitter. This will help turn off the transistor more quickly.

In order to decrease the collector current of the transistor from 1 to 0.1 A, C_{π} must be discharged by 60 mV. Recognizing that the capacitance will decrease as the collector current is brought down, the capacitance can be approximated by using an average value of one-half, or about 1.5 μF. Assume high transistor β so that the base current that normally must flow to keep the transistor turned on can be ignored. If a constant base discharge current of 30 mA is employed, the time it takes to ramp down the collector current by a decade can be estimated as follows:

$$T = C \times V/I = 3.0 \mu s$$

This is still quite a long time if the amplifier is trying to rapidly change the output current as a result of a large high-frequency signal transient. Here the average rate of change of collector current is about 0.3 A/μs. To put this in perspective, assume an amplifier is driving 40-V peak into a 4-Ω load at 20 kHz. The voltage rate of change is 5 V/μs and the current rate of change must be 1.25 A/μs.

Unfortunately, just as BJTs experience beta droop at higher currents, so they also suffer from f_T droop at higher currents. A good conventional power transistor might start off with f_T of 6 MHz at 1 A, be down in f_T by 20% at 3 A, and be all the way down to 2 MHz at 10 A. At the same time, BJTs also suffer f_T droop at lower collector-emitter voltages while operating at high currents. This compounds the problem when an output stage is at a high-amplitude portion of a high-frequency waveform and delivering high current into the load. Under these conditions, V_{ce} might be as little as 5 V or less and device current might be several amperes.
So-called ring emitter transistors (RETs) and similar advanced BJT power transistor designs can have f_t in the 20- to 80-MHz range. However, they also suffer from f_t droop at high currents. A typical RET might start out with an f_t of 40 MHz at 1 A and maintain it quite well to 3 A, then have it crash to 4 MHz or less at 10 A. The RET devices also lose f_t at low current. At 100 mA, where they may be biased in a class AB output stage, the same RET may have f_t of only 20 MHz.

The Hybrid Pi Model

Those more familiar with transistors will recognize that much of what has been discussed above is the makeup of the hybrid pi small-signal model of the transistor, shown in Figure 2.3. The fundamental active element of the transistor is a voltage-controlled current source, namely a transconductance. Everything else in the model is essentially a passive parasitic component. AC current gain is taken into account by the base-emitter resistance r_π. The Early effect is taken into account by r_o. Collector-base capacitance is shown as C_{cb}. Current gain roll-off with frequency (as defined by f_t) is modeled by C_{π}. The values of these elements are as described above. This is a small-signal model; element values will change with the operating point of the transistor.

The Ideal Transistor

Operational amplifier circuits are often designed by assuming an ideal op amp, at least initially. In the same way a transistor circuit can be designed by assuming an “ideal” transistor. This is like starting with the hybrid pi model stripped of all of its passive parasitic elements. The ideal transistor is just a lump of transconductance. As needed, relevant impairments, such as finite β, can be added to the ideal transistor. This usually depends on what aspect of performance is important at the time.

The ideal transistor has infinite current gain, infinite input impedance, and infinite output resistance. It acts as if it applies all of the small-signal base voltage to the emitter through an internal intrinsic emitter resistance r_e'.

Safe Operating Area

The *safe operating area* (SOA) for a transistor describes the safe combinations of voltage and current for the device. This area will be bounded on the X axis by the maximum operating voltage and on the Y axis by the maximum operating current. The SOA is also bounded by a line that defines the maximum power dissipation of the device. Such a plot is shown for a power transistor in Figure 2.4, where voltage and current are plotted on log scales and the power dissipation limiting line becomes the outermost straight line.
Unfortunately, power transistors are not just limited in their safe current-handling capability by their power dissipation. At higher voltages they are more seriously limited by a phenomenon called secondary breakdown. This is illustrated by the more steeply sloped inner line in Figure 2.4.

Although there are many different ways to specify SOA, perhaps the single most indicative number for audio power amplifier design is the amount of current the transistor can safely sustain for at least 1 second at some high collector-emitter voltage such as 100 V. In the absence of secondary breakdown, a 150-W power transistor could sustain a current of 1.5 A at 100 V. In reality, this number may only be 0.5 A, corresponding to only 50 W of dissipation. Secondary breakdown causes the sustainable power dissipation at high voltages to be less than that at low voltages.

Secondary breakdown results from localized hot spots in the transistor. At higher voltages the depletion region of the collector-base junction has become larger and the effective base region has become thinner. Recall that the collector current of a transistor increases as the junction temperature increases if the base-emitter voltage is held constant. A localized increase in the power transistor’s base-emitter junction temperature will cause that area to hog more of the total collector current. This causes the local area to become hotter, conduct even more current, and still become hotter; this leads to a localized thermal runaway.

SOA is very important in the design of audio amplifier output stages because the SOA can be exceeded, especially when the amplifier is driving a reactive load. This can lead to the destruction of the output transistors unless there are safe area protection circuits in place. There will be a much deeper examination of power transistor SOA in Chapter 15, including discussion of the higher value of SOA that a transistor can withstand for shorter periods of time.

JFETs and MOSFETs

So far nothing has been said about JFET and MOSFET transistors. These will be discussed in Chapters 7 and 11 where their use in power amplifiers is covered. The short
version is that they are really not much different than BJTs in many of the characteristics that have been discussed. Their gate draws essentially no DC current in normal operation, as they are voltage-controlled devices. Just think of them as transistors with infinite current gain and about 1/10 the transconductance of BJTs, and you will not be far off. This is a major simplification, but it is extremely useful for small-signal analysis. In reality, a FET is a square-law device, while the current in a BJT follows an exponential law.

2.2 Circuit Building Blocks

An audio power amplifier is composed of just a few important circuit building blocks put together in many different combinations. Once each of those building blocks can be understood and analyzed, it is not difficult to do an approximate analysis by inspection of a complete power amplifier. Knowledge of how these building blocks perform and bring performance value to the table permits the designer to analyze and synthesize circuits.

Common-Emitter Stage

The common-emitter (CE) amplifier is possibly the most important circuit building block, as it provides basic voltage gain. Assume that the transistor’s emitter is at ground and that a bias current has been established in the transistor. If a small voltage signal is applied to the base of the transistor, the collector current will vary in accordance with the base voltage. If a load resistance R_L is provided in the collector circuit, that resistance will convert the varying collector current to a voltage. A voltage-in, voltage-out amplifier is the result, and it likely has quite a bit of voltage gain. A simple common emitter amplifier is shown in Figure 2.5a.

The voltage gain will be approximately equal to the collector load resistance times the transconductance g_m. Recall that the intrinsic emitter resistance $r_e' = 1/g_m$. Thus, more conveniently, assuming the ideal transistor with intrinsic emitter resistance r_e', the gain is simply R_L/r_e'.

Consider a transistor biased at 1 mA with a load resistance of 5000 Ω and a supply voltage of 10 V, as shown in Figure 2.5a. The intrinsic emitter resistance r_e' will be about 26 Ω. The gain will be approximately $5000/26 = 192$.

![Figure 2.5a](Common-emitter amplifier)
This is quite a large value. However, any loading by other circuits that are driven by the output has been ignored. Such loading will reduce the gain.

The Early effect has also been ignored. It effectively places another resistance r_o in parallel with the 5-kΩ load resistance. This is illustrated by the dashed resistor drawn in the figure. As mentioned earlier, r_o for a 2N5551 operating at 1 mA and relatively low collector-emitter voltages will be on the order of 100 kΩ, so the error introduced by ignoring the Early effect here will be about 5%.

Because r'_e is a function of collector current, the gain will vary with signal swing and the gain stage will suffer from some distortion. The gain will be smaller as the current swings low and the output voltage swings high. The gain will be larger as the current swings high and the output voltage swings low. This results in second harmonic distortion.

If the input signal swings positive so that the collector current increases to 1.5 mA and the collector voltage falls to 2.5 V, r'_e will be about 17.3 Ω and the incremental gain will be 5000/17.3 = 289. If the input signal swings negative so that the collector current falls to 0.5 mA and the collector voltage rises to 7.5 V, then r'_e will rise to about 52 Ω and incremental gain will fall to 5000/52 = 96. The incremental gain of this stage has thus changed by over a factor of 3 when the output signal has swung 5 V peak-to-peak. This represents a high level of distortion.

If external emitter resistance is added as shown in Figure 2.5b, then the gain will simply be the ratio of R_L to the total emitter circuit resistance consisting of r'_e and the external emitter resistance R_e. Since the external emitter resistance does not change with the signal, the overall gain is stabilized and is more linear. This is called emitter degeneration. It is a form of local negative feedback.

The CE stage in Figure 2.5b is essentially the same as that in 2.5a but with a 234-Ω emitter resistor added. This corresponds to 10:1 emitter degeneration because the total effective resistance in the emitter circuit has been increased by a factor of 10 from 26 to 260 Ω. The nominal gain has also been reduced by a factor of 10 to a value of approximately 5000/260 = 19.2.
Consider once again what happens to the gain when the input signal swings positive and negative to cause a 5-V peak-to-peak output swing. If the input signal swings positive so that the collector current increases to 1.5 mA and the collector voltage falls to 2.5 V, total emitter circuit resistance \(R_e \) will become 17 + 234 = 251 \(\Omega \), and the incremental gain will rise to 5000/251 = 19.9.

If the input signal swings negative so that the collector current falls to 0.5 mA and the collector voltage rises to 7.5 V, then \(R_e \) will rise to about 234 + 52 = 287 \(\Omega \) and incremental gain will fall to 5000/287 = 17.4. The incremental gain of this stage has now swung over a factor of 1.14:1, or only 14%, when the output signal has swung 5 V peak to peak. This is indeed a much lower level of distortion than occurred in the undegenerated circuit of Figure 2.5a. This illustrates the effect of local negative feedback without resort to any negative feedback theory.

We thus have, for the CE stage, the approximation

\[
\text{Gain} = \frac{R_L}{(r_e' + R_e)}
\]

where \(R_L \) is the net collector load resistance and \(R_e \) is the external emitter resistance. The emitter degeneration factor is defined as \((r_e' + R_e)/r_e'\). In this case that factor is 10.

Emitter degeneration also mitigates nonlinearity caused by the Early effect in the CE stage. As shown by the dotted resistance \(r_o \) in Figure 2.5b, most of the signal current flowing in \(r_o \) is returned to the collector by way of being injected into the emitter. If 100% of the signal current in \(r_o \) were returned to the collector, the presence of \(r_o \) would have no effect on the output resistance of the stage. In reality, some of the signal current in \(r_o \) is lost by flowing in the external emitter resistor \(R_e \) instead of through emitter resistance \(r_e' \) (some is also lost due to the finite current gain of the transistor). The fraction of current lost depends on the ratio of \(r_e' \) to \(R_e \), which in turn is a reflection of the amount of the emitter degeneration. As a rough approximation, the output resistance due to the Early effect for a degenerated CE stage is

\[
R_{\text{out}} \sim r_o \ast \text{degeneration factor}
\]

If \(r_o \) is 100 k\(\Omega \) and 10:1 emitter degeneration is used as in Fig. 2.5b, then the output resistance of the CE stage due to the Early effect will be on the order of 1 M\(\Omega \). Bear in mind that this is just a convenient approximation. In practice, the output resistance of the stage cannot exceed approximately \(r_o \) times the current gain of the transistor. It has been assumed that the CE stage here is driven with a voltage source. If it is driven by a source with significant impedance, the output resistance of the degenerated CE stage will decrease somewhat from the values predicted above. That reduction will occur because of the changes in base current that result from the Early effect.

Bandwidth of the Common-Emitter Stage and Miller Effect

The high-frequency response of a CE stage will be limited if it must drive any load capacitance. This is no different than when a source resistance drives a shunt capacitance, forming a first-order low-pass filter. A pole is formed at the frequency where the source resistance and reactance of the shunt capacitance are the same; this causes the frequency response to be down 3 dB at that frequency. The reactance of a capacitor is equal to \(1/(2\pi fC) = 0.159/(fC) \). The \(-3\) dB frequency \(f_3 \) will then be 0.159/(\(RC\)).

In Figure 2.5a the output impedance of the CE stage is approximately that of the 5-k\(\Omega \) collector load resistance. Suppose the stage is driving a load capacitance of 100 pF.
The bandwidth will be dictated by the low-pass filter formed by the output impedance of the stage and the load capacitance. A pole will be formed at

\[f_p = \frac{1}{2\pi R_L C_L} = \frac{0.159}{(5 \text{k}\Omega \times 100 \text{ pF})} = 318 \text{ kHz} \]

As an approximation, the collector-base capacitance should also be considered part of \(C_L \). The bandwidth of a CE stage is often further limited by the collector-base capacitance of the transistor when the CE stage is fed from a source with significant impedance. The source must supply current to charge and discharge the collector-base capacitance through the large voltage excursion that exists between the collector and the base. This phenomenon is called the Miller effect.

Suppose the collector-base capacitance is 5 pF and assume that the CE stage is being fed from a 5-k\(\Omega \) source impedance \(R_S \). Recall that the voltage gain \(G \) of the circuit in Figure 2.5a was approximately 192. This means that the voltage across \(C_{cb} \) is 193 times as large as the input signal (bearing in mind that the input signal is out of phase with the output signal, adding to the difference). This means that the current flowing through \(C_{cb} \) is 193 times as large as the current that would flow through it if it were connected from the base to ground instead of base to collector. The input circuit thus sees an effective input capacitance \(C_{in} \) that is \(1 + G \) times that of the collector-base capacitance. This phenomenon is referred to as Miller multiplication of the capacitance. In this case the effective value of \(C_{in} \) would be 965 pF.

The base-collector capacitance effectively forms a shunt feedback circuit that ultimately controls the gain of the stage at higher frequencies where the reactance of the capacitor becomes small. As frequency increases, a higher proportion of the input signal current must flow to the collector-base capacitance as opposed to the small fixed amount of signal current required to flow into the base of the transistor. If essentially all of the input signal current flowed through the collector-base capacitance, the gain of the stage would simply be the ratio of the capacitive reactance of \(C_{cb} \) to the source resistance

\[G = \frac{X_{C_{cb}}}{R_S} = \frac{1}{(2\pi f C_{cb}) R_S} = \frac{0.159}{(2\pi f C_{cb} R_S)} \]

This represents a value of gain that declines at 6 dB per octave as frequency increases. This decline will begin at a frequency where the gain calculated here is equal to the low-frequency gain of the stage. The Miller effect is often used to advantage in providing the high-frequency roll-off needed to stabilize a negative feedback loop. This is referred to as Miller compensation.

Differential Amplifier

The differential amplifier is illustrated in Figure 2.6. It is much like a pair of common emitter amplifiers tied together at the emitters and biased with a common current. This current is called the tail current. The arrangement is often referred to as a long-tailed pair (LTP).

The differential amplifier routes its tail current to the two collectors of Q1 and Q2 in accordance with the voltage differential across the bases of Q1 and Q2. If the base voltages are equal, then equal currents will flow in the collectors of Q1 and Q2. If the base of Q1 is more positive than that of Q2, more of the tail current will flow in the collector of Q1 and less will flow in the collector of Q2. This will result in a larger voltage drop across the collector load resistor \(R_{L1} \) and a smaller voltage drop across load resistor \(R_{L2} \).
Output A is thus inverted with respect to Input A, while Output B is noninverted with respect to Input A.

Visualize the intrinsic emitter resistance r'_e present in each emitter leg of Q1 and Q2. Recall that the value of r'_e is approximately 26 Ω divided by the transistor operating current in milliamperes. With 1 mA flowing nominally through each of Q1 and Q2, each can be seen as having an emitter resistance r'_e of 26 Ω. Note that since $g_m = 1/r'_e$ is dependent on the instantaneous transistor current, the values of g_m and r'_e are somewhat signal dependent, and indeed this represents a nonlinearity that gives rise to distortion.

Having visualized the ideal transistor with emitter resistance r'_e, one can now assume that the idealized internal emitter of each device moves exactly with the base of the transistor, but with a fixed DC voltage offset equal to V_{be}. Now look what happens if the base of Q1 is 5.2 mV more positive than the base of Q2. The total emitter resistance separating these two voltage points is 52 Ω, so a current of 5.2 mV/52 Ω = 0.1 mA will flow from the emitter of Q1 to the emitter of Q2. This means that the collector current of Q1 will be 100 μA more than nominal, and the collector current of Q2 will be 100 μA less than nominal. The collector currents of Q1 and Q2 are thus 1.1 mA and 0.9 mA, respectively, since they must sum to the tail current of 2.0 mA (assuming very high β for the transistors).

This 100-μA increase in the collector current of Q1 will result in a change of 500 mV at Output A, due to the collector load resistance of 5000 Ω. A 5.2-mV input change at the base of Q1 has thus caused a 500-mV change at the collector of Q1, so the stage gain to Output A in this case is approximately 500/5.2 = 96.2. More significantly, the stage gain defined this way is just equal numerically to the load resistance of 5000 Ω divided by the total emitter resistance $r'_e = 52$ Ω across the emitters.

Had additional external emitter degeneration resistors been included in series with each emitter, their value would have been added into this calculation. For example, if 48-Ω emitter degeneration resistors were employed, the gain would then become 5000/[(52 + 48 + 48 + 52) = 5000/200 = 25. This approach to estimating stage gain is a very
important back-of-the-envelope concept in amplifier design. In a typical amplifier
design, one will often start with these approximations and then knowingly account
for some of the deviations from the ideal. This will be evident in the numerous design
analyses to follow.

It was pointed out earlier that the change in transconductance of the transistor as
a function of signal current can be a source of distortion. Consider the situation where a
negative input signal at the base of Q1 causes Q1 to conduct 0.5 mA and Q2 to conduct
1.5 mA. The emitter resistance \(r'_e \) of Q1 is now \(26/0.5 = 52 \, \Omega \). The emitter resistance \(r'_e \) of Q2 is now \(26/1.5 = 17.3 \, \Omega \). The total emitter resistance from emitter to emitter has now risen from 52 \(\Omega \) in the case above to 69.3 \(\Omega \). This results in a reduced gain of \(5000/69.3 = 72.15 \). This represents a reduction in gain by a factor of 0.75, or about 25%. This is an
important origin of distortion in the LTP. The presumed signal swing that caused the
imbalance of collector currents between Q1 and Q2 resulted in a substantial decrease in
the incremental gain of the stage. More often than not, distortion is indeed the result of a
change in incremental gain as a function of instantaneous signal amplitude.

The gain of an LTP is typically highest in its balanced state and decreases as the
signal goes positive or negative away from the balance point. This symmetrical behavior
is in contrast to the asymmetrical behavior of the common-emitter stage, where the
gain increases with signal swing in one direction and decreases with signal swing in the
other direction. To first order, the symmetrical distortion here is third harmonic distor-
tion, while that of the CE stage is predominantly second harmonic distortion.

Notice that the differential input voltage needed to cause the above imbalance in
the LTP is only on the order of 25 mV. This means that it is fairly easy to overload an LTP
that does not incorporate emitter degeneration. This is of great importance in the design
of most power amplifiers that employ an LTP input stage.

Suppose the LTP is pushed to 90% of its output capability. In this case Q1 would be
conducting 0.1 mA and Q2 would be conducting 1.9 mA. The two values of \(r'_e \) will be
260 \(\Omega \) and 14 \(\Omega \), for a total of 274 \(\Omega \). The gain of the stage is now reduced to \(5000/274 = 18.25 \). The nominal gain of this un-degenerated LTP was about 96.2. The incremental gain
under these large signal conditions is down by about 80%, implying gross distortion.

As in the case of the CE stage, adding emitter degeneration to the LTP will substanci-
tially reduce its distortion while also reducing its gain. In summary we have the
approximation

\[
\text{Gain} = \frac{R_{L1}}{2(r'_e + R_e)}
\]

where \(R_{L1} \) is a single-ended collector load resistance and \(R_e \) is the value of external emitter
degeneration resistance in each emitter of the differential pair. This gain is for the
case where only a single-ended output is taken from the collector of Q1. If a differential
output is taken from across the collectors of Q1 and Q2, the gain will be doubled. For
convenience, the total emitter-to-emitter resistance in an LTP, including the intrinsic \(r'_e \)
resistances, will be called \(R_{LTP} \). In the example above,

\[
R_{LTP} = 2(r'_e + R_e)
\]

Emitter Follower

The emitter follower (EF) is essentially a unity voltage gain amplifier that provides cur-
rent gain. It is most often used as a buffer stage, permitting the high impedance output
of a CE or LTP stage to drive a heavier load.
The emitter follower is illustrated in Figure 2.7. It is also called a common collector (CC) stage because the collector is connected to an AC ground. The output pull-down resistor R1 establishes a fairly constant operating collector current in Q1. For illustration, a load resistor R2 is being driven through a coupling capacitor. For AC signals, the net load resistance R_L at the emitter of Q1 is the parallel combination of R1 and R2. If r_e' of Q1 is small compared to R_L, virtually all of the signal voltage applied to the base of Q1 will appear at the emitter, and the voltage gain of the emitter follower will be nearly unity.

The signal current in the emitter will be equal to V_{out}/R_L, while the signal current in the base of Q1 will be this amount divided by the β of the transistor. It is immediately apparent that the input impedance seen looking into the base of Q1 is equal to the impedance of the load multiplied by the current gain of Q1. This is the most important function of the emitter follower.

As mentioned above, the voltage gain of the emitter follower is nearly unity. Suppose R1 is 9.4 kΩ and the transistor bias current is 1 mA. The intrinsic emitter resistance r_e' will then be about 26 Ω. Suppose R2 is 1 kΩ, making net R_L equal to 904 Ω. The voltage gain of the emitter follower is then approximately

$$G = \frac{R_L}{R_L + r_e'} = 0.97$$

At larger voltage swings the instantaneous collector current of Q1 will change with signal, causing a change in r_e'. This will result in a change in incremental gain that corresponds to distortion. Suppose the signal current in the emitter is 0.9 mA peak in each direction, resulting in an output voltage of about 814 mV peak. At the negative peak swing, emitter current is only 0.1 mA and r_e' has risen to 260 Ω. Incremental gain is down to about 0.78. At the positive peak swing the emitter current is 1.9 mA and r_e' has fallen to 13.7 Ω; this results in a voltage gain of 0.985.

Voltage gain has thus changed by about 21% over the voltage swing excursion; this causes considerable second harmonic distortion. One solution to this is to reduce R1 so that a greater amount of bias current flows, making r_e' a smaller part of the gain equation. This of course also reduces net R_L, somewhat. A better solution is to replace R1 with a constant current source.

The transformation of low-value load impedance to much higher input impedance by the emitter follower is a function of the current gain of the transistor. The β is...
a function of frequency, as dictated by the f_T of the transistor. This means, for example, that a resistive load will be transformed to impedance at the input of the emitter follower that eventually begins to decrease with frequency as β_{AC} decreases with frequency. A transistor with a nominal β of 100 and f_T of 100 MHz will have an f_β of 1 MHz. The AC β of the transistor will begin to drop at 1 MHz. The decreasing input impedance of the emitter follower thus looks capacitive in nature, and the phase of the input current will lead the phase of the voltage by an amount approaching 90 degrees.

The impedance transformation works both ways. Suppose we have an emitter follower that is driven by a source impedance of 1 kΩ. The low-frequency output impedance of the EF will then be approximately 1 kΩ divided by β, or about 10 Ω (ignoring r_e'). However, the output impedance will begin to rise above 1 MHz where β begins to fall. Impedance that increases with frequency is inductive. Thus, Z_{out} of an emitter follower tends to be inductive at high frequencies.

Now consider an emitter follower that is loaded by a capacitance. This can lead to instability, as we will see. The load impedance presented by the capacitance falls with increasing frequency. The amount by which this load impedance is multiplied by β_{AC} also falls with frequencies above 1 MHz. This means that the input impedance of the emitter follower is ultimately falling with the square of frequency. It also means that the current in the load, already leading the voltage by 90 degrees, will be further transformed by another 90 degrees by the falling transistor current gain with frequency. This means that the input current of the emitter follower will lead the voltage by an amount approaching 180 degrees. When current is 180 degrees out of phase with voltage, this corresponds to a negative resistance. This can lead to instability, since the input impedance of this emitter follower is a frequency-dependent negative resistance under these conditions. This explains why placing a resistance in series with the base of an emitter follower will sometimes stabilize it; the positive resistance adds to the negative resistance by an amount that is sufficient to make the net resistance positive.

There is one more aspect of emitter follower behavior that pertains largely to its use in the output stage of a power amplifier. It was implied above that if an emitter follower was driven from a very low impedance source that its output impedance would simply be r_e' of its transistor. This is not quite the whole story. Transistors have finite base resistance. The output impedance of an emitter follower will actually be the value of r_e' plus the value of the base resistance divided by β of the transistor. This can be significant in an output stage. Consider a power transistor operating at 100 mA. Its r_e' will be about 0.26 Ω. Suppose that transistor has a base resistance of 5 Ω and a current gain of 50. The value of the transformed base resistance will be 0.1 Ω. This is not insignificant compared to the value of r_e' and must be taken into account in some aspects of design. This can also be said for the emitter resistance of the power transistor, which may range from 0.01 to 0.1 Ω.

The simplicity of the emitter follower, combined with its great ability to buffer a load, accounts for it being the most common type of circuit used for the output stage of power amplifiers. An emitter follower will often be used to drive a second emitter follower to achieve even larger amounts of current gain and buffering. This arrangement is sometimes called a Darlington connection. Such a pair of transistors, each with a current gain of 50, can increase the impedance seen driving a load by a factor of 2500. Such an output stage driving an 8-Ω load would present an input impedance of 20,000 Ω.
A cascode stage is implemented by Q2 in Figure 2.8. The cascode stage is also called a common base stage because the base of its transistor is connected to AC ground. Here the cascode is being driven at its emitter by a CE stage comprising Q1. The most important function of a cascode stage is to provide isolation. It provides near-unity current gain, but can provide very substantial voltage gain. In some ways it is like the dual of an emitter follower.

A key benefit of the cascode stage is that it largely keeps the collector of the driving CE stage at a constant potential. It thus isolates the collector of the CE stage from the large swing of the output signal. This eliminates most of the effect of the collector-base capacitance of Q2, resulting in wider bandwidth due to suppression of the Miller effect. Similarly, it mitigates distortion caused by the nonlinear collector-base junction capacitance of the CE stage, since very little voltage swing now appears across the collector-base junction to modulate its capacitance.

The cascode connection also avoids most of the Early effect in the CE stage by nearly eliminating signal swing at its collector. A small amount of Early effect remains, however, because the signal swing at the base of the CE stage modulates the collector-base voltage slightly.

If the current gain of the cascode transistor is 100, then 99% of the signal current entering the emitter will flow in the collector. The input-output current gain is thus 0.99. This current transfer factor from emitter to collector is sometimes referred to as the alpha of the transistor.

The Early effect resistance ro still exists in the cascode transistor. It is represented as a resistance ro connected from collector to emitter. Suppose ro is only 10 kΩ. Is the output impedance of the collector of the cascode 10 kΩ? No, it is not. Recall that 99% of the signal current entering the emitter of the cascode re-appears at the collector. This means that 99% of the current flowing in ro also returns to the collector.
collector. Only the lost 1% of the current in r_o results in a change in the net collector current at the collector terminal. This means that the net effect of r_o on the collector output impedance in the cascode is roughly like that of a 1-MΩ resistor to ground. This is why the output impedance of cascode stages is so high even though Early effect still is present in the cascode transistor.

\[R_{out} = \beta * r_o \]
\[r_o = \frac{V_A + V_{ce}}{I_c} \]
\[r_o = \frac{V_A}{I_c} \quad \text{at low } V_{ce} \]
\[R_{out} = \beta * \frac{V_A}{I_c} \]

Notice that the product of β and V_A is the Early effect figure of merit mentioned previously. The output resistance of a cascode is thus the FOM divided by the collector current.

\[R_{out} = \frac{\text{FOM}}{I_c} \]

Current Mirror

Figure 2.9a depicts a very useful circuit called a current mirror. If a given amount of current is sourced into Q1, that same amount of current will be sunk by Q2, assuming that the emitter degeneration resistors R1 and R2 are equal, that the transistor V_{be} drops are the same, and that losses through base currents can be ignored. The values of R1 and R2 will often be selected to drop about 100 mV to ensure decent matching in the face of unmatched transistor V_{be} drops, but this is not critical.

![Figure 2.9a](image)

Figure 2.9a Simple current mirror.
If R1 and R2 are made different, a larger or smaller multiple if the input current can be made to flow in the collector of Q2. In practice, the base currents of Q1 and Q2 cause a small error in the output current with respect to the input current. In the example above, if transistor β is 100, the base current I_{b} of each transistor will be 50 μA, causing a total error of 100 μA, or 2% in the output current.

Figure 2.9b shows a variation of the current mirror that minimizes errors due to the finite current gain of the transistors. Here emitter follower Q3, often called a helper transistor, provides current gain to minimize that error. Resistor R3 assures that a small minimum amount of current flows in Q3 even if the current gains of Q1 and Q2 are very high. Note that the input node of the current mirror now sits one V_{be} higher above the supply rail than in Figure 2.9a.

Many other variations of current mirrors exist, such as the Wilson current mirror shown in Figure 2.9c. The Wilson current mirror includes transistors Q1, Q2, and Q3. Input current is applied to the base of Q3 and is largely balanced by current flowing in the collector of Q1. Input current that flows into the base of output transistor Q3 will turn Q3 on, with its emitter current flowing through Q2 and R2. Q1 and Q2 form a conventional current mirror. The emitter current of Q3 is mirrored and pulled from the source of input current by Q1.

Any difference between the current of Q1 and the input current is available to drive the base of Q3. If the input current exceeds the mirrored emitter current of Q3, the base voltage of Q3 will increase, causing the emitter current of Q3 to increase and self-correct the situation with feedback action. The equilibrium condition can be seen to be when the input current and the output current are the same, providing an overall 1:1 current mirror function.

Notice that in normal operation all three of the transistors operate at essentially the same current, namely the supplied input current. Ignoring the Early effect, all of the base currents will be the same if the betas are matched. Assume that each base current
is \(I_b \) and that the collector current in Q1 is equal to \(I \). It can be quickly seen that the input current must then be \(I + I_b \) and that the emitter current of Q3 must be \(I + 2I_b \). It is then evident that the collector current of Q3, which is the output current, will be \(I + I_b \), which is the same as the input current. This illustrates the precision of the input-output relationship when the transistors are matched.

Transistor Q3 acts much like a cascode, and this helps the Wilson current mirror to achieve high output impedance. Transistors Q1 and Q2 operate at a low collector voltage, while output transistor Q3 will normally operate at a higher collector voltage. Thus, the Early effect will cause the base current of Q3 to be smaller, and this will result in a slightly higher voltage-dependent output current. This is reflected in the output resistance of the Wilson current mirror.

Current Sources

Current sources are used in many different ways in a power amplifier, and there are many different ways to make a current source. The distinguishing feature of a current source is that it is an element through which a current flows wherein that current is independent of the voltage across that element. The current source in the tail of the differential pair is a good example of its use.

Most current sources are based on the observation that if a known voltage is impressed across a resistor, a known current will flow. A simple current source is shown in Figure 2.10a. The voltage divider composed of R2 and R3 places 2.7 V at the base of Q1. After a \(V_{be} \) drop of 0.7 V, about 2 V is impressed across emitter resistor R1. If R1 is a 400-\(\Omega \) resistor, 5 mA will flow in R1 and very nearly 5 mA will flow in the collector of Q1. The collector current of Q1 will be largely independent of the voltage at the collector of Q1, so the circuit behaves as a decent current source. The load resistance \(R_L \) is just shown for purposes of illustration. The output impedance of the current source itself (not including the shunting effect of \(R_L \)) will be determined largely by the Early effect in...
the same way as for the CE stage. The output impedance for this current source is found by SPICE simulation to be about 290 kΩ.

In Figure 2.10b, R3 is replaced with a pair of silicon diodes. Here one diode drop is impressed across R1 to generate the desired current. The circuit employs 1N4148 diodes biased with the same 0.5 mA used in the voltage divider in the first example. Together
they drop only about 1.1 V, and about 0.38 V is impressed across the 75-Ω resistor R1. The output impedance of this current source is approximately 300 kΩ, about the same as the one above.

Turning to Figure 2.10c, R3 is replaced instead with a Green LED, providing a convenient voltage reference of about 1.8 V, putting about 1.1 V across R1. Once again, 0.5 mA is used to bias the LED. The output impedance of this current source is about 750 kΩ. It is higher than in the design of Figure 2.10b because there is effectively more emitter degeneration for Q1 with the larger value of R1.

R3 is replaced with a 6.2-V Zener diode in Figure 2.10d. This puts about 5.5 V across R1. The output impedance of this current source is about 2 MΩ, quite a bit higher than the earlier arrangements due to the larger emitter degeneration for Q1. The price paid here is that the base of the transistor is fully 6.2 V above the supply rail, reducing headroom in some applications.

In Figure 2.10e, a current mirror fed from a known supply voltage is used to implement a current source. Here a 1:1 current mirror is used and 5 mA is supplied from the known power rail. The output impedance of this current source is about 230 kΩ. Only 0.25 V is dropped across R1 (corresponding to 10:1 emitter degeneration), and the base is only 1 V above the rail.

Figure 2.10f illustrates a clever two-transistor feedback circuit that is used to force one V_{be} of voltage drop across R1. It does so by using transistor Q2 to effectively regulate the current of Q1. If the current of Q1 is too large, Q2 will be turned on harder and pull down on the base of Q1, adjusting its current downward appropriately. As in Figure 2.10a through 2.10d, a 0.5-mA current is supplied to bias the current source. This current flows through Q2. The output impedance of this current source is an impressive 3 MΩ. This circuit achieves higher output impedance than the Zener-based version and yet only requires the base of Q1 to be 1.4 V above the power rail. This circuit can also be used to place an overcurrent limit on a CE transistor stage implemented with Q1.

Figure 2.10c Current source using LED.
This circuit will work satisfactorily even if less than 0.5 mA (one-tenth of the output current) is supplied as bias for Q2, but then the output impedance will fall to a lower value and the “quality” of the current source will suffer somewhat. This happens because at lower collector current, Q2 has less transconductance and its feedback control of the current variations in Q1 as a result of the Early effect is less strong. If the bias current is reduced to 0.1 mA, for example, the output impedance falls to about 1 MΩ.
V_{be} Multiplier

Figure 2.11 shows what is called a V_{be} multiplier. This circuit is used when a voltage drop equal to some multiple of V_{be} drops is needed. This circuit is most often used as the bias spreader for power amplifier output stages, partly because its voltage is conveniently adjustable.
In the circuit shown, the V_{be} of Q1 is multiplied by a factor of approximately 4. Notice that the voltage divider formed by R1 and R2 places about one-fourth of the collector voltage at the base of Q1. Thus, in equilibrium, when the voltage at the collector is at four V_{be}, one V_{be} will be at the base, just enough to turn on Q1 by the amount necessary to carry the current supplied. This is simply a shunt feedback circuit. In this arrangement, about 1 mA flows through the resistive divider while about 9 mA flows through Q1.

When the V_{be} multiplier is used as a bias spreader, R2 will be made adjustable with a trim pot. As R2 is made smaller the amount of bias voltage is increased. Notice that if for some reason R2 fails open, the voltage across the V_{be} multiplier falls to about one V_{be}, failing in the safe direction.

In practice the V_{be} multiplication ratio will be a bit greater than 4 due to the base current required by Q1 as a result of its finite current gain. The extra drop caused across R1 by the base current will slightly increase the collector voltage at equilibrium, making the apparent multiplier factor slightly larger than 4.

The impedance of the V_{be} multiplier is about 4 r_e' for Q1. At 9 mA, r_e' is 2.9 Ω, so ideally the impedance of the multiplier would be about 11.6 Ω. In practice, SPICE simulation shows it to be about 25 Ω. This larger value is mainly a result of the finite current gain of Q1.

The impedance of the V_{be} multiplier rises at high frequencies. This is a result of the fact that the impedance is established by a negative feedback process. The amount of feedback decreases at high frequencies and the impedance-reducing effect is lessened. The impedance of the V_{be} multiplier in Figure 2.11 is up by 3 dB at about 2.3 MHz and doubles for every octave increase in frequency from there. It is thus inductive. For this reason, the V_{be} multiplier is often shunted by a capacitor of 0.1 to 10 μF. A shunt capacitance of as little as 0.1 μF eliminates the increase in impedance at high frequencies.

2.3 Amplifier Design Analysis

Here we apply the understanding of transistors and circuit building blocks to analyze the basic power amplifier. Having accomplished this, we will be well armed to explore, evolve, and analyze the amplifier design steps that will be taken to achieve high performance in the next chapter.

Figure 2.12 is a schematic of a basic 50-W power amplifier that includes the three stages that appear in most solid-state power amplifiers.

- Differential input stage (IPS) comprising Q1–Q3
- Voltage Amplification Stage (VAS) comprising Q4, Q6, and Q7
- Output stage (OPS) comprising Q8–Q11

The design also includes a bias spreader implemented with Q5 connected as a V_{be} multiplier. Some details like coupling capacitors, input networks, and output networks have been left out for simplicity.

The amplifier of Figure 2.12 will be described in simple terms, so that those who are less familiar with circuit design will quickly come to understand its behavior. Those who are already familiar with these concepts can relax and skim through this section.
Basic Operation
This simple design is a more detailed version of the basic amplifier design illustrated in Figure 1.5. As shown, it is a DC-coupled design, so that even DC changes at the input will be amplified and presented at the output.

Input Stage
The input signal is applied to the input differential pair at the base of Q1. A fraction of the output signal is coupled via the negative feedback path to the other differential input at the base of Q2. Transistor Q3 implements a 2-mA current source that provides tail current to the differential pair. This input arrangement is often called a Long-Tailed Pair (LTP).

Feedback resistors R2 and R3 implement a voltage divider that feeds back 1/20 of the output signal to the input stage. The forward path gain of the amplifier in the absence of negative feedback is called the open-loop gain (A_{ol}). If the open-loop gain is large, then the error signal across the bases of Q1 and Q2 need only be very small to produce the desired output. If the signals at the bases of Q1 and Q2 are nearly equal, then the output of the amplifier must be 20 times that of the input, resulting in a closed-loop gain (A_{cl}) of 20. This is just a very simplified explanation of the negative feedback process.
The approximate low-frequency gain of the input stage is the ratio of the net collector load resistance divided by the total emitter-to-emitter resistance R_{LTP} (which includes the intrinsic emitter resistance r'_e of Q1 and Q2). With each transistor biased at 1 mA, the intrinsic emitter resistance r'_e is about 26 Ω each, so the total emitter-to-emitter resistance is 52 Ω. If we assume that the β of the following VAS transistor Q4 is infinity, the net IPS collector load resistance is just that of R1. The DC gain of the IPS is then $1000/52 = 19$. In practice the finite β of Q4 reduces this to about 13.7 if we assume that the β of Q4 is 100.

IPS gain = 13.7

The amplifier at low frequencies is illustrated in Figure 2.13 where the input stage is shown as a block of transconductance with $g_m = 1/52 = 0.019$ S. The R_1' load of 714 Ω on the IPS is just the parallel combination of R1 and the estimated input impedance of the VAS.

The VAS

The VAS is formed by common-emitter transistor Q4 loaded by the 10-mA current source formed by Q6 and Q7. Recall from the discussion of current sources above that Q6 forces one V_{be} (here about 620 mV) across 62- Ω resistor R9; this produces the desired current flow.

Emitter degeneration has been applied to Q4 in the form of R6. At 10 mA, r'_e of Q4 is about 2.6 Ω. The 22-Ω resistance of R6 therefore increases the total effective emitter circuit resistance to about 25 Ω, or by a factor of nearly 10. This corresponds to 10:1 emitter degeneration. The emitter degeneration makes the VAS stage more linear in its operation.

If the β of Q4 is assumed to be 100, the input impedance of the VAS will be about $100 \times 25 = 2500$ Ω. This impedance is in parallel with R1, making the actual load on the first stage approximately 714 Ω. The voltage gain of the input stage is therefore close to 13.7. The loading of Q4 thus plays a substantial role in determining the first-stage gain. It would play a far greater role if Q4 were not degenerated by R6. In that case the impedance seen looking into the base of Q4 would be only about 260 Ω ($\beta = 100 \times r'_e = 2.6$ Ω).

The low-frequency gain of the VAS will be set by the ratio of its collector load impedance to its total effective emitter resistance of about 25 Ω. The VAS collector load
impedance in this simple design is dominated by the loading of the output stage, since the output impedance of the current source is quite high.

The output stage is a complementary Darlington arrangement, buffering the loudspeaker load impedance as seen by the VAS collector circuit. The amount of buffering depends on the current gain of the driver and output transistors. Throughout these discussions it will be assumed that small-signal transistors have current gain of 100 and power transistors have current gain of 50. If the driver and output transistor current gains are assumed to be 100 and 50 respectively, the buffering factor will be the product of these, or about 5000. If the load impedance at the output is assumed to be 8 Ω, this will appear as a load impedance of 40,000 Ω to the VAS collector circuit. The gain of the VAS is thus on the order of 40,000/25 = 1600.

In the discussion on the Early effect in Section 2.1 it was shown that a common-emitter stage like the VAS used here (10-mA bias, 10:1 emitter degeneration) has an intrinsic output impedance of about 135 kΩ. Recall that the output resistance r_o for a transistor is

$$r_o = \frac{V_A + V_{ce}}{I_c}$$

and that R_{out} for a common-emitter stage with degeneration is approximated by

$$R_{out} = r_o \times \text{degeneration factor}$$

The Early voltage for the 2N5551 is about 100 V. At a collector current of 10 mA and a V_{ce} of 35 V, r_o for the 2N5551 will be about 13.5 kΩ. With 10:1 degeneration, R_{out} of the CE stage will be about 135 kΩ, or about 3.4 times that of the load imposed by the output stage.

The net collector load impedance is the parallel combination of the 135-kΩ Early effect resistance and the 40-kΩ effective external load resistance, or 31 kΩ. The output resistance of the current source has been ignored because it is much higher. The estimated voltage gain of the VAS equal to 31 kΩ/25 = 1240.

VAS gain = 1240

This VAS voltage gain of 1240 is shown in Figure 2.13.

Open-Loop Gain

If the voltage gain of the output stage is approximately unity, the forward gain of the amplifier (without considering negative feedback) is the product of the input stage gain and the VAS gain, or about 13.7 × 1240 = 17,000. Recall that we refer to this as the open-loop gain A_{ol}. In reality the gain of the output stage is about 0.96 when driving an 8-Ω load, so the open-loop gain is a bit less.

Open-loop gain = 16,300

Because the feedback network attenuates the signal by a factor of 20, the gain around the feedback loop, or loop gain, is about 816. This corresponds to about 58 dB of negative feedback (NFB) at low frequencies.

Loop gain = 816

NFB = 20 log(816) = 58 dB
If the amplifier is producing 20 V at its output, the error signal across the bases of Q1 and Q2 needs only to be 20/16,300 = 1.2 mV. Earlier it was asserted that the closed-loop gain would be approximately 20 on the basis of the feedback network attenuating the output by a factor of 20 and the required differential input to the amplifier being small. Because the input only needs to be 1.2 mV (compared to the input signal level of 1 V), it is apparent that this is a very good approximation.

Miller Feedback Compensation

Capacitor C1 is the so-called Miller compensation capacitor C_M. It plays a critical role in stabilizing the global negative feedback loop around the amplifier. It does this by rolling off the high-frequency gain of the amplifier so that the gain around the feedback loop falls below unity before enough phase lag builds up to cause instability. This will be discussed in much more detail in Chapter 4.

The effect of Miller compensation capacitor C1 on the open-loop gain is illustrated in Figure 2.14. Here the topology of the amplifier has effectively transitioned from that of Figure 2.13 to that of Figure 2.14 as the analysis has gone from low frequencies to high frequencies. In Figure 2.14 the combined gain of the input stage and the VAS is equal to the product of the transconductance of the IPS and the impedance of C1. At high frequencies the gain is dominated by C1 rather than by R1'.

The capacitor controls the high-frequency AC gain of the VAS by forming a shunt feedback loop around the VAS transistor. At higher frequencies, virtually all of the signal current from the LTP input stage flows through C1. This creates a voltage drop across C1 that becomes the output voltage of the VAS. At this point the VAS is acting like a so-called Miller integrator, where the output voltage is the integral of the input current.

While at low frequencies the gain of the combined input stage and VAS is set by the product of the individual voltage gains of those two stages, at higher frequencies that combined gain is set by the ratio of the impedance of C1 to the total emitter resistance ($1/gm$) in the LTP. That is because the signal current from the input stage is inversely proportional to the total LTP emitter resistance R_{LTP}. Since the impedance of C1 is inversely related to frequency, the gain set by it will decrease at 6 dB per octave as frequency increases. The frequency at which the AC gain based on this calculation becomes

Figure 2.14 Amplifier gain at high frequencies.
smaller than the DC gain is where the roll-off of the amplifier’s open-loop frequency response begins.

Assume for the moment an operating frequency of 20 kHz. At this frequency the reactance of C1 is $1/(2\pi \times 20 \text{ kHz} \times 300 \text{ pF}) = 26,500 \text{ } \Omega$. If all of the signal current provided by the LTP passes through C1, then the gain of the combined input and VAS stage at this frequency is $26,500/52 = 510$. This is considerably less than the low-frequency open-loop gain of 17,000. This means that the capacitor is dominating the gain at this frequency. This further supports the validity of the assumption that essentially all signal current from the LTP flows through the capacitor at this frequency.

The frequency where the gain around the negative feedback loop becomes unity is called the gain crossover frequency f_c, or simply the unity-gain frequency. This is illustrated by Figure 2.15, which is called a Bode plot. It shows the various gains of the amplifier in an idealized form with straight lines.

The open-loop gain starts out at 84 dB at low frequencies and begins to fall off at 20 dB per decade starting at about 613 Hz. This frequency corresponds to the open-loop bandwidth and is the frequency where the behavior of the amplifier transitions from that of Figure 2.13 to that of Figure 2.14.

The closed-loop gain of 20, corresponding to 26 dB, is shown as the horizontal dotted line. Where it intersects the falling open-loop gain line is the gain crossover frequency. This also corresponds approximately to the actual closed-loop bandwidth of the amplifier. Here, that crossing occurs at 500 kHz. The distance between the closed-loop gain line and the open-loop gain curve represents the amount of negative feedback, often called loop gain because it is the gain around the feedback loop.

The gain crossover frequency f_c is chosen to be low enough to assure adequate feedback loop stability. There is a trade-off between stability and distortion here. Making the gain crossover frequency higher results in more negative feedback at high frequencies.
and less high-frequency distortion. Making the gain crossover frequency too high jeopardizes loop stability. For this amplifier, \(f_c \) has been chosen to be 500 kHz as a reasonable compromise between distortion reduction and stability.

The high-frequency open-loop gain of this simple amplifier is the ratio of Miller capacitor reactance to IPS total emitter resistance \(R_{\text{LTP}} \). The closed-loop gain \(A_{\text{cl}} \) is the same as the attenuation ratio in the feedback path. The Miller capacitance needed to establish a gain crossover frequency \(f_c \) is then simply

\[
C_{\text{Miller}} = \frac{1}{(2\pi f_c \cdot R_{\text{LTP}} \cdot A_{\text{cl}})}
\]

\[
= \frac{0.159}{(500 \text{ kHz} \cdot 52 \Omega \cdot 20)} = 306 \text{ pF}
\]

If instead we define \(C_{\text{Miller}} \) in terms of the transconductance of the IPS, \(g_{m_{\text{LTP}}} \), we have

\[
C_{\text{Miller}} = \frac{g_{m_{\text{LTP}}}}{(2\pi f_c \cdot A_{\text{cl}})}
\]

This shows clearly that increasing the \(g_m \) of the LTP requires a corresponding increase in \(C_{\text{Miller}} \) to maintain the same \(f_c \).

The gain crossover frequency for most audio power amplifiers usually lies between 200 kHz and 2 MHz. If the open-loop gain falls off at 6 dB per octave (as it does with simple Miller compensation), this corresponds to 20 dB per decade. It can then be seen that an amplifier with a gain crossover frequency of 200 kHz will have about 20 dB of negative feedback at 20 kHz. An amplifier with a 2-MHz gain crossover frequency will have about 40 dB of negative feedback at 20 kHz.

The Output Stage

The output stage is a class AB complementary Darlington arrangement consisting of emitter follower drivers Q8 and Q9 followed by output devices Q10 and Q11. Emitter resistors R11 and R12 set the idle current of the drivers at about 20 mA. The output stage emitter resistors R13 and R14 provide thermal bias stability and also play a role in controlling crossover distortion. These resistors will also be referred to as \(R_E \). The output stage provides a voltage gain of slightly less than unity. Its main role is to buffer the output of the VAS with a large current gain. If driver transistor betas are assumed to be 100 and output transistor betas are assumed to be 50, the combined current gain of the output stage is 5000. When driving the 8-\(\Omega \) output load as shown, the load impedance seen by the VAS looking into the output stage will be about 40,000 \(\Omega \).

On positive half-cycles of the signal, Q8 and Q10 conduct current and transport the signal to the output node by sourcing current into the load. On negative half-cycles, Q9 and Q11 conduct current and transport the signal to the output node by sinking current from the load. When there is no signal, a small idle bias current of approximately 100 mA flows from the top NPN output transistor through the bottom PNP output transistor. A key observation is that the signal takes a different path through the output stage on positive and negative half-cycles. If the voltage or current gains of the top and bottom parts of the output stage are different, distortion will result. Moreover, the “splice point” where the signal current passes through zero and crosses from one path to the other can be tricky, and this can lead to so-called crossover distortion.

The voltage gain of the output stage is determined by the voltage divider formed by the output stage emitter follower output impedance and the loudspeaker load impedance. The output impedance of each half of the output stage is approximately equal to \(r_e' \) plus \(R_E \). This is illustrated in Figure 2.16.
Since the two halves of the output stage act in parallel when they are both active at idle and under small-signal conditions, the net output impedance will be about half that of each side.

\[Z_{\text{out\ (small\ signal)}} \approx \left(r\text{e'}_{\text{idle}} + R_E \right) / 2 \]

If the output stage is biased at 100 mA, then \(r\text{e'} \) of each output transistor will be about 0.26 \(\Omega \). The summed resistance for each side will then be 0.26 + 0.33 = 0.59 \(\Omega \). Both output halves being in parallel will then result in an output impedance of about 0.3 \(\Omega \). Because voltage gain is being calculated, these figures assume that the output stage is being driven by a voltage source. If the load impedance is 8 \(\Omega \), then the voltage gain of the output stage will be \(8 / (8 + 0.3) = 0.96 \), as shown in Figures 2.13 and 2.14. If instead the load impedance is 4 \(\Omega \), the gain of the output stage will fall to 0.93. The voltage divider action governing the output stage gain is illustrated in Figure 2.17.

Bear in mind that the small-signal gain of the output stage has been calculated at its quiescent bias current. The value of \(r\text{e'} \) for each of the output transistors will change as transistor currents increase or decrease, giving rise to complex changes in the output stage gain. Moreover, at larger signal swings only one half of the output stage is active. This means that the output impedance under those conditions will be approximately...
The changes in incremental output stage gain as a function of output signal current cause what is called **static crossover distortion**.

\[
Z_{\text{out(large signal)}} = r'e_{\text{high current}} + R_E \approx R_E
\]

At high current, \(r'e\) becomes very small. At 1 A, \(r'e\) is just 0.026 \(\Omega\), much smaller than a typical value of \(R_E\). At 10 A, \(r'e\) is theoretically just 0.0026 \(\Omega\). That is why \(Z_{\text{out(large signal)}} \approx R_E\). If \(R_E\) is chosen so that

\[
R_E = r'e_{\text{idle}}
\]

then

\[
Z_{\text{out(large signal)}} = Z_{\text{out(small signal)}} = R_E
\]

and crossover distortion is minimized by making the large-signal and small-signal output stage gains approximately equal [2]. This is only a compromise solution and does not eliminate static crossover distortion because the equality does not hold at intermediate values of output current as the signal passes through the crossover region. This variation in output stage gain as a function of output current is illustrated in Figure 2.18.

Output Stage Bias Current

The idle bias current of the output stage plays a critical role in controlling crossover distortion. It is important that the right amount of bias current flows through the output stage, from top to bottom, when the output is not delivering any current to the load. Notice that together the two driver and two output transistors require at least four \(V_{BE}\) voltage drops from the base of Q8 to the base of Q9 to begin to turn on. Any additional drop across the output emitter resistors will increase the needed bias spreading voltage.

Figure 2.18 Output stage gain versus output current.
The optimum class AB idle bias for a conventional output stage like this is that amount of current that produces a voltage drop of approximately 26 mV across each of the output emitter resistors [2]. Recall that

\[r_e' = \frac{V_T}{I_c} = 26 \text{ mV} / I_c \]

Then

\[I_c = \frac{26 \text{ mV}}{r_e'} = \frac{26 \text{ mV}}{R_E} \]

and

\[V_{re} = I_c \cdot R_E = 26 \text{ mV} \]

This amount of bias current makes \(r_e' \) of the output transistor equal to the resistance of its associated emitter resistor. With 0.33-Ω emitter resistors, this corresponds to about 79 mA. In the example design here I have chosen to overbias the output stage slightly to a current of 100 mA. This means that small-signal gain will be slightly larger than large-signal gain in this case. This is evident in Figure 2.18.

There is a caveat to the assertion that the optimum bias point occurs when 26 mV is dropped across each output emitter resistor. Recall from Section 2.1 that the actual output impedance of an emitter follower is slightly greater than \(r_e' \). The additional resistance results from physical base and emitter resistances inside the transistor. This additional resistive component acts as an extension of the external emitter resistor \(R_E \). This means that the optimum voltage drop across the external emitter resistor will be somewhat less than 26 mV.

The required bias voltage for the output stage is developed across the bias spreader comprising a \(V_{be} \) multiplier built around Q5. In practice R7 is adjusted to set the output stage bias current to the desired value.

The objective of the bias spreader design is temperature stability of the bias point of the output stage. The temperature coefficient of the voltage produced by the \(V_{be} \) multiplier should match approximately that of the base-emitter junction voltages of the driver and output transistors. Since the \(V_{be} \) of a transistor decreases by about 2.2 mV/°C, it is important for thermal bias stability that these junction drops track one another reasonably. The output transistors will usually heat up the most. Because they are mounted on a heat sink, Q5 should also be mounted on the heat sink so that it is exposed to the same approximate temperature. This approach is only an approximation, because the drivers are often not mounted on the heat sink and because the temperature of the heat sink changes more slowly in time than that of the power transistor junctions.

Performance Limitations of the Simple Amplifier

The basic amplifier of Figure 2.12 has a decent low-frequency open-loop gain of about 16,300, or about 84 dB. With a closed-loop gain of 20 (26 dB) it has a feedback factor of about 816, corresponding to about 58 dB of negative feedback. However, its open-loop gain has not been made very linear and it is very vulnerable to \(\beta \) variations with signal in the output stage.

The feedback compensation was set to obtain a moderate negative feedback gain crossover frequency \(f_c \) of 500 kHz. This will typically result in a closed-loop 3-dB bandwidth of about 500 kHz. Selection of \(f_c = 500 \text{ kHz} \) is what governed the choice of C1 at 300 pF. With \(f_c = 500 \text{ kHz} \) and the assumed 6 dB per octave roll-off, the amount of negative
feedback at 20 kHz is about 500 kHz / 20 kHz = 25, corresponding to 28 dB. This means that there will be less distortion correction at 20 kHz than at low frequencies.

Notice that the input stage can never deliver more than ±1 mA with respect to its nominal bias point. If all of this 1-mA swing goes into charging or discharging C1, the maximum voltage rate of change across C1 will be 1 mA / 300 pF = 3.3 V / µs. This is very inadequate for virtually any power amplifier and will likely result in high frequency distortion often referred to as slewing-induced distortion (SID) or transient intermodulation distortion (TIM) [3, 4, 5]. Even with a demanded voltage rate of change well below the slew rate limit of 3.3 V / µs, the un-degenerated input differential stage will become nonlinear and produce high-frequency distortion.

These limitations will all be addressed in the next chapter as the design is evolved to a high-performance architecture.

References